Le flot de Toda

On note **R** l'ensemble des nombres réels, I la matrice unité d'ordre m et e_j le j-ème vecteur de la base canonique de \mathbf{R}^m dont les composantes sont les δ_{ij} , i=1,m. On rappelle que $\delta_{ij}=0$ si $j\neq i$ et $\delta_{ij}=1$ si j=i.

On note (u|v) le produit scalaire des vecteurs u et v de \mathbf{R} . Les vecteurs de \mathbf{R}^m seront assimilés à des matrices colonnes; tu note le transposé du vecteur u.

L'expression : i = 1, m signifie "pour tout i entier tel que $1 \le i \le m$."

1 Tridiagonalisation

Soit u un vecteur unitaire de \mathbb{R}^m ; la matrice

$$H = I - 2u^t u, \tag{1}$$

est la matrice de Householder d'ordre m associée au vecteur u.

Question 1 Montrer que Hu = -u et que Hv = v dès que v est orthogonal à u.

Question 2 Démontrer que H est symétrique et orthogonale.

Question 3 Soit $g \in \mathbf{R}^m$, de composantes γ_i , $1 \le i \le m$, un vecteur unitaire non colinéaire à e_1 . On pose $u = (g - e_1) / \sqrt{2(1 - \gamma_1)}$, montrer que u est unitaire et que $Hg = e_1$.

Question 4 En déduire que si x est un vecteur de \mathbb{R}^m non colinéaire à e_1 , il existe un vecteur unitaire u et une matrice de Householder associée H telle que $Hx = ||x|| e_1$.

Soient c un réel, Q une matrice symétrique réelle d'ordre m-1, q_{21} un vecteur de \mathbf{R}^{m-1} et $\widehat{\mathbf{Q}} = \left(\begin{array}{c|c} c & ^tq_{21} \\ \hline q_{21} & Q \end{array} \right)$ une matrice définie par blocs. Si \mathbf{H}_1 est une matrice de

Householder d'ordre m-1; on pose $\widehat{\mathbf{H}_1} = \left(\begin{array}{c|c} 1 & \zeta \\ \hline \zeta & \mathbf{H}_1 \end{array}\right)$, où ζ note le vecteur nul dans \mathbf{R}^{m-1} , ainsi que $\widehat{\mathbf{S}} = \widehat{\mathbf{H}_1} \widehat{\mathbf{Q}} \widehat{\mathbf{H}_1} = \left(\widehat{\sigma}_{ij}\right)_{1 \leq i \leq m, \ 1 \leq j \leq m}$.

Question 5 Montrer que \widehat{S} est semblable à \widehat{Q} et qu'on peut choisir H_1 de telle sorte que $\widehat{\sigma}_{i1} = \widehat{\sigma}_{1i} = 0$ pour i = 3, m.

On dit qu'une matrice $\mathbf{T} = (\tau_{ij})_{1 \leq i \leq m, 1 \leq j \leq m}$ est tridiagonale si $\tau_{ij} = 0$ dès que |i-j| > 1.

Question 6 En déduire un procédé permettant de déterminer une matrice tridiagonale symétrique semblable à \hat{Q} .

2 Matrices de Jacobi

Une matrice tridiagonale symétrique réelle est encore appelée matrice de Jacobi. Soit

$$T_{0} = \begin{pmatrix} b_{1} & a_{1} & 0 & \cdots & 0 \\ a_{1} & b_{2} & a_{2} & \ddots & \vdots \\ 0 & a_{2} & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & a_{m-1} \\ 0 & \cdots & 0 & a_{m-1} & b_{m} \end{pmatrix}$$
 (2)

une matrice de Jacobi d'ordre m. On pose $a_0 = a_m = 0$ et on suppose que $a_i \neq 0$, i = 1, m - 1. On note $\sigma(T_0)$ le spectre de T_0 , c'est-à-dire l'ensemble de ses valeurs propres.

Question 7 Soit $\lambda \in \sigma(T_0)$ et x un vecteur propre associé de composantes ξ_j , j = 1, m. En raisonnant par l'absurde, montrer que $\xi_m \neq 0$.

Question 8 Démontrer que les sous-espaces propres de T_0 sont de dimension 1. Quel est le cardinal de $\sigma(T_0)$?