

Mathématiques 1

PC

2023

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

L'objectif de ce sujet est d'établir le théorème de Perron-Frobenius pour une certaine classe de matrices symétriques. Ce théorème étudie les espaces propres d'une matrice associés aux valeurs propres de module maximal. Une application, en conclusion, montre une ouverture à l'analyse spectrale des matrices à coefficients positifs.

- La partie I permet d'obtenir des résultats préliminaires, utiles pour les parties suivantes.
- La partie II examine, à titre d'exemple, le cas des matrices à coefficients strictement positifs de taille deux.
- La partie III s'intéresse au lien entre le rayon spectral d'une matrice et le comportement asymptotique de la suite de ses puissances successives ; elle est indépendante de la partie II.
- La partie IV donne une démonstration du théorème pour une classe de matrices symétriques à coefficients positifs ; elle est indépendante des parties II et III.

Notations et définitions

 $\mathbb K$ désigne l'ensemble $\mathbb R$ des réels ou l'ensemble $\mathbb C$ des complexes.

Soit n et p deux entiers naturels non nuls.

- On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} et $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$.
- Si $A=(A_{ij})_{1\leqslant i\leqslant n, 1\leqslant j\leqslant p}$ est une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$, on note |A| la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont les coefficients sont $|A_{ij}|$ $(1\leqslant i\leqslant n$ et $1\leqslant j\leqslant p)$.
- Une matrice A de $\mathcal{M}_{n,p}(\mathbb{R})$ est dite positive (respectivement strictement positive) lorsque tous ses coefficients sont positifs ou nuls (respectivement strictement positifs). La notation $A \geqslant 0$ (respectivement A > 0) signifie que la matrice A est positive (respectivement strictement positive).
- Si A et B sont deux matrices de $\mathcal{M}_{n,p}(\mathbb{R})$, la notation $A \geqslant B$ (respectivement A > B) signifie que la matrice A B est positive (respectivement strictement positive). De même, la notation $A \leqslant B$ (respectivement A < B) signifie que la matrice B A est positive (respectivement strictement positive).
- Les propriétés suivantes pourront être librement utilisées (sous réserve que les opérations correspondantes puissent être envisagées) :
 - $\bullet \quad |A+B| \leqslant |A| + |B| \; ;$
 - $|A^{\top}| = |A|^{\top}$;
 - si $\gamma \in \mathbb{K}$, alors $|\gamma A| = |\gamma||A|$;
 - si $A \ge 0$ et $B \ge 0$, alors $AB \ge 0$.
- On rappelle que le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ est défini, pour tous vecteurs X et Y de $\mathcal{M}_{n,1}(\mathbb{R})$, par

$$(X\mid Y) = X^{\top}Y = \sum_{k=1}^{n} X_{k}Y_{k}, \quad \text{où } X = \begin{pmatrix} X_{1} \\ \vdots \\ X_{n} \end{pmatrix} \text{ et } Y = \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{pmatrix}.$$

La norme euclidienne (associée à ce produit scalaire) du vecteur X est alors donnée par

$$\|X\| = \sqrt{X^{\top}X} = \left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1/2}.$$

- Le spectre d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ est noté $\operatorname{sp}(A)$.
- Le rayon spectral d'une matrice A de $\mathcal{M}_n(\mathbb{K})$, de spectre non vide, est le réel positif ou nul, noté $\rho(A)$, défini par

$$\rho(A) = \max\{|\lambda| \mid \lambda \in \operatorname{sp}(A)\}.$$

— On dit qu'une norme $N:\mathcal{M}_n(\mathbb{K})\to\mathbb{R}$ est sous-multiplicative si, pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{K})$,

$$N(AB) \leqslant N(A)N(B)$$
.

I Résultats préliminaires

Q 1. Soit n un entier naturel, A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ et X un vecteur de $\mathcal{M}_{n,1}(\mathbb{R})$. Montrer que

si
$$A > 0, X \ge 0$$
 et $X \ne 0$, alors $AX > 0$,

et que

$$|AB| \leqslant |A||B|.$$

Q 2. Rappeler l'inégalité de Cauchy-Schwarz pour deux vecteurs
$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 et $Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$ de $\mathcal{M}_{n,1}(\mathbb{R})$.

En déduire que si n est un entier naturel et $z_1,...,z_n,w_1,...,w_n$ sont des nombres complexes, alors

$$\sum_{k=1}^n \lvert z_k \rvert \lvert w_k \rvert \leqslant \left(\sum_{k=1}^n \lvert z_k \rvert^2 \right)^{1/2} \left(\sum_{k=1}^n \lvert w_k \rvert^2 \right)^{1/2}.$$

Q 3. Soit z un nombre complexe tel que |1+z|=1+|z|. Montrer que $z\in\mathbb{R}_+$. En déduire que, si z et z' sont deux nombres complexes vérifiant |z+z'|=|z|+|z'| et $z\neq 0$, alors

$$\exists \, \alpha \in \mathbb{R}_+ \mid z' = \alpha z.$$

Q 4. Soit n un entier supérieur ou égal à 2 et $z_1, ..., z_n$ des nombres complexes non tous nuls tels que

$$\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|.$$

Montrer que

$$\exists\,\theta\in\mathbb{R}\mid\forall k\in[\![1,n]\!],z_k=\mathrm{e}^{\mathrm{i}\theta}|z_k|.$$

Dans le cas où $z_1 \neq 0$, on pourra appliquer le résultat de la question précédente aux couples (z_1, z_k) pour $k \in [\![2,n]\!]$.

II Matrices strictement positives de $\mathcal{M}_2(\mathbb{R})$

Soit a, b, c et d des nombres réels strictement positifs et $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- **Q 5.** Exprimer le discriminant Δ du polynôme caractéristique de A en fonction de a, b, c et d.
- **Q 6.** Montrer que $\Delta > 0$. En déduire qu'il existe deux réels λ et μ , vérifiant $\lambda < \mu$, tels que A soit semblable
- à la matrice $\begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$.
- **Q 7.** Montrer que $|\lambda| < \mu$.
- **Q 8.** Montrer que la suite $(A^k)_{k \in \mathbb{N}^*}$ converge vers une matrice L non nulle si et seulement si $\mu = 1$. En cas de convergence, préciser le rang de L puis montrer que L est la matrice d'un projecteur de \mathbb{R}^2 .
- **Q 9.** Soit α et β deux réels de]0,1[et B la matrice $\begin{pmatrix} 1-\alpha & \beta \\ \alpha & 1-\beta \end{pmatrix}$. Montrer que B est semblable à la
- matrice $D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \alpha \beta \end{pmatrix}$ et donner une matrice S de $\mathcal{M}_2(\mathbb{R})$, inversible, telle que $B = SDS^{-1}$.
- **Q 10.** En déduire que la suite $(B^k)_{k\in\mathbb{N}^*}$ converge vers une matrice Λ que l'on explicitera.

III Normes sous-multiplicatives sur $\mathcal{M}_n(\mathbb{C})$; rayon spectral

III.A – Exemples de normes sous-multiplicatives sur $\mathcal{M}_n(\mathbb{C})$

Pour toute matrice
$$A=(A_{ij})_{1\leqslant i,j\leqslant n}$$
 de $\mathcal{M}_n(\mathbb{C}),$ on pose

$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |A_{ij}| \right)$$
 et $||A||_{2} = \left(\sum_{j=1}^{n} \sum_{i=1}^{n} |A_{ij}|^{2} \right)^{1/2}$.

- **Q 11.** Montrer que $\|\cdot\|_{\infty}$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$.
- **Q 12.** On admet que $\|\cdot\|_2$ est une norme sur $\mathcal{M}_n(\mathbb{C})$; montrer que cette norme est sous-multiplicative.

Q 13. Soit N une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$ et S une matrice inversible de $\mathcal{M}_n(\mathbb{C})$. Montrer que l'on définit une norme sous-multiplicative ν sur $\mathcal{M}_n(\mathbb{C})$ en posant $\nu(A)=N(S^{-1}AS)$ pour toute $A\in\mathcal{M}_n(\mathbb{C})$.

III.B - Rayon spectral

Soit n un entier supérieur ou égal à 2 et A une matrice de $\mathcal{M}_n(\mathbb{C})$.

III.B.1)

- Soit S une matrice inversible de $\mathcal{M}_n(\mathbb{C})$. Comparer $\rho(A)$ et $\rho(S^{-1}AS)$. Q 14.
- Justifier que A est trigonalisable. Comparer, pour $k \in \mathbb{N}^*$, $\rho(A^k)$ et $\rho(A)^k$ et, pour $\alpha \in \mathbb{C}$, $\rho(\alpha A)$ Q 15. et $\rho(A)$.
- Montrer que, pour toute norme N sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$, on a $\rho(A) \leq N(A)$. Q 16. On pourra fixer une valeur propre λ de A et mettre en évidence une matrice $H \in \mathcal{M}_n(\mathbb{C})$, non nulle, telle que $AH = \lambda H$.

III.B.2)

Le but de cette section est de montrer que, pour tout réel strictement positif $\varepsilon > 0$, il existe une norme N sur $\mathcal{M}_n(\mathbb{C})$, sous-multiplicative (dépendant de A et de ε), telle que

$$N(A)\leqslant \rho(A)+\varepsilon.$$

À cette fin, on introduit, pour tout réel strictement positif τ , la matrice diagonale

$$D_{\tau} = \mathrm{diag}(1,\tau,...,\tau^{n-1})$$

et on considère une matrice T triangulaire supérieure de $\mathcal{M}_n(\mathbb{C})$.

Calculer le produit $D_{\tau}^{-1}TD_{\tau}$ en précisant, pour tout $(i,j) \in [\![1,n]\!]^2$, l'expression du coefficient en Q 17. position (i,j) de la matrice $D_{\tau}^{-1}TD_{\tau}$ en fonction de τ et des coefficients de la matrice T.

Montrer qu'il existe $\delta > 0$ tel que, pour tout $\tau \in \mathbb{R}$ vérifiant $|\tau| \leq \delta$, on a $||D_{\tau}^{-1}TD_{\tau}||_{\infty} \leq \rho(T) + \varepsilon$. Q 18.

Q 19. Conclure.

III.B.3)

Utiliser ce qui précède pour montrer que la suite $(A^k)_{k\in\mathbb{N}^*}$ converge vers la matrice nulle si et seulement Q 20. si $\rho(A) < 1$.