II La fonction β

II.A - La fonction Γ

II.A.1) Soit x > 0. Montrer que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$.

Dans toute la suite, on notera Γ la fonction définie sur \mathbb{R}^{+*} par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t.$

On admettra que Γ est de classe \mathcal{C}^{∞} sur son ensemble de définition, à valeurs strictement positives et qu'elle vérifie, pour tout réel x>0, la relation $\Gamma(x+1)=x\Gamma(x)$.

II.A.2) Soit x et α deux réels strictement positifs. Justifier l'existence de $\int_0^{+\infty} t^{x-1}e^{-\alpha t} dt$ et donner sa valeur en fonction de $\Gamma(x)$ et α^x .

II.B - La fonction β et son équation fonctionnelle

$$\text{Pour }(x,y) \text{ dans }(\mathbb{R}^{+*})^2 \text{, on définit } \beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, \mathrm{d}t.$$

- **II.B.1)** Justifier l'existence de $\beta(x, y)$ pour x > 0 et y > 0.
- **II.B.2)** Montrer que pour tous réels x > 0 et y > 0, $\beta(x, y) = \beta(y, x)$.
- **II.B.3)** Soient x > 0 et y > 0. Établir que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$.

II.B.4) En déduire que pour
$$x > 0$$
, $y > 0$, $\beta(x+1,y+1) = \frac{xy}{(x+y)(x+y+1)}\beta(x,y)$.

II.C - Relation entre la fonction β et la fonction Γ

On veut montrer que pour x>0 et y>0, $\beta(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ relation qui sera notée (\mathcal{R}) .

II.C.1) Expliquer pourquoi il suffit de montrer la relation (\mathcal{R}) pour x > 1 et y > 1.

Dans toute la suite de cette question on suppose x > 1 et y > 1.

$$\textbf{II.C.2)} \quad \text{Montrer que } \beta(x,y) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} \, \mathrm{d}u.$$

On pourra utiliser le changement de variable $t=\displaystyle\frac{u}{1+u}$

II.C.3) On note $F_{x,y}$ la primitive sur \mathbb{R}^+ de $t\mapsto e^{-t}t^{x+y-1}$ qui s'annule en 0. Montrer que

$$\forall t \in \mathbb{R}^+, F_{x,y}(t) \leqslant \Gamma(x+y)$$

$$\mbox{II.C.4)} \ \ \mbox{Soit} \ \ G(a) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y}((1+u)a) \, \mathrm{d}u.$$

Montrer que G est définie et continue sur \mathbb{R}^+ .

- **II.C.5)** Montrer que $\lim_{x \to a} G(a) = \Gamma(x+y)\beta(x,y)$.
- **II.C.6**) Montrer que G est de classe \mathcal{C}^1 sur tout segment [c,d] inclus dans \mathbb{R}^{+*} , puis que G est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .
- **II.C.7)** Exprimer pour a > 0, G'(a) en fonction de $\Gamma(x)$, e^{-a} et a^{y-1}
- **II.C.8)** Déduire de ce qui précède la relation (\mathcal{R}) .