Algorithmique pour IA et Jeux Tronc commun informatique

Vincent Puyhaubert

PC* Joffre

28 février 2023

Table des matières

- 1 Introduction à la théorie des jeux
 - Jeux d'accessibilité sur un graphe
 - Algorithme min-max

- 2 Algorithmes d'apprentissage
 - Apprentissage supervisé
 - Apprentissage non supervisé

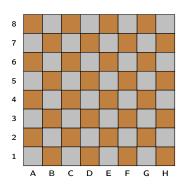
Exemples

Dans tous les exemples qui suivent, deux joueurs jouent à tour de rôle.

- Ford-Boyard (jeu de Nim)
 - 20 batonnets sont disposés sur une table.
 - ▶ A son tour, un joueur retire entre 1 et 3 batonnets de la table.
 - Le perdant est celui qui retire le dernier batonnet.
- Jeu de Marienbad
 - ▶ On dispose de *p* tas d'allumettes
 - A son tour, chaque joueur peut retirer un nombre quelconque d'allumettes, mais dans un seul tas.
 - Le gagnant est celui qui retire la dernière allumette.
- Jeux à possibilité de match nul
 - Morpion
 - Puissance 4
 - Échecs

Exemples

- Jeu de Wythoff
 - On joue sur un échiquier de taille quelconque, sur lequel se déplace une reine.
 - Les seuls déplacements autorisés sont vers la gauche, vers le bas, ou en diagonale en bas à gauche, de longueur arbitraire.
 - Le gagnant est celui qui place la reine dans le coin en bas à gauche.



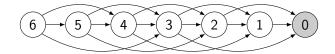
Jeux à deux joueurs (programme officiel)

Le programme officiel limite l'étude aux jeux à deux joueurs avec les caractéristiques suivantes :

- Les deux joueurs jouent à tour de rôle (exit Shifumi)
- Les deux joueurs ont à chaque instant la même information sur l'état actuel du jeu (exit les jeux de cartes)
- Les coups jouables ne dépendent que de l'état actuel du jeu, ni du joueur (jeu impartial), ni des coups précédents (jeu sans mémoire).
- Dans une position donnée, une décision amène toujours à la même nouvelle position (jeu sans hasard).

Modélisation

- Les jeux sont modélisés par un graphe (V, E) orienté fini (l'arène).
- Une position est un sommet du graphe
- Une arête (i,j) entre deux sommets i et j signifie que l'on peut jouer un coup depuis la position i pour arriver en position j.
- Une position est dite finale s'il elle n'est l'extrémité gauche d'aucune arête (on ne peut plus jouer de coup). Parmi elles, on distingue
 - les positions finales gagnantes (ou perdantes suivant le choix)
 - les positions finales de match nul
- Pour assurer qu'un jeu se finit, on ajoute généralement une hypothèse d'acyclicité au graphe.

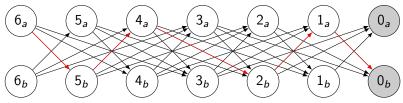


Modélisation

- Il est préférable de dupliquer le graphe de manière à créer deux ensembles de sommets disjoints :
 - ► l'ensemble V_a sommets contrôlés par le joueur A
 - ightharpoonup l'ensemble V_b des sommets controlés par le joueur B

Il y a trois types de positions finales : celles gagnantes pour A, celles gagnantes pour B et les positions de match nul.

 Chaque coup joué par un joueur amène sur un sommet contrôle par l'autre joueur. Le graphe est dit bi-parti.



 Une partie d'origine s est un chemin dans le graphe bi-parti dont la première position est s. Elle est gagné par le joueur J ∈ {A, B} si elle termine dans une position finale gagnante controlée par J.

Definition

- Une stratégie pour le joueur A est une application $f: V_a' \subset V_a \longrightarrow V_b$ telle que pour tout $s \in V_a'$, $(s, f(s)) \in E$.
- Une partie $s_0 \to s_1 \to \cdots \to s_n$ est dite jouée suivant f lorsque pour tout $k \in [0; n-1]$, si $s_k \in V'_a$, alors $s_{k+1} = f(s_k)$.
- Une stratégie est dite gagnante pour le joueur A depuis une position s si toute partie jouée suivant cette stratégie et passant par s est gagnante pour ce joueur.

Intuitivement,

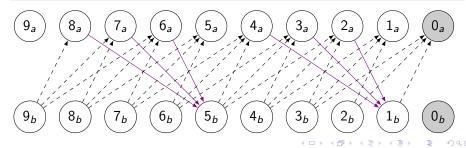
- Une stratégie est une fonction qui indique quel coup jouer depuis chaque élément d'un sous-ensemble de position.
- Elle est gagnante depuis s si elle permet de gagner à partir de la position s quels que soient les coups joués par son adversaire.

Example

Dans le jeu des batonnets de Ford-Boyard, on pose

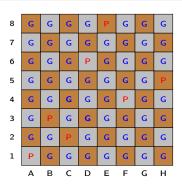
$$g: k = (4q+r) \longrightarrow \begin{cases} 4q+1 & \text{si } r \in \{2,3,4\} \\ - & \text{sinon} \end{cases}$$

Alors, l'application $f: k_a \longmapsto g(k)_b$ est une stratégie gagnante depuis tout sommet de S_a qui n'est pas de la forme $(4q+1)_a$.



Definition

Une position s est dite gagnante pour le joueur J s'il existe une stratégie gagnante pour J depuis s.



Definition

Une position s est dite gagnante pour le joueur J s'il existe une stratégie gagnante pour J depuis s.

Plus généralement, si s est une position quelconque,

- Si s est controlée par A et qu'au moins un coup amène à une position gagnante pour A, s est également gagnante pour A.
- Si elle est controlée par *B* et que **tous** les coups amènent à une position gagnante pour *A*, *s* est gagnante pour *A*.

On se donne G=(V,E) un graphe bi-parti acyclique représentant un jeu à 2 joueurs. On note $V=V_a\cup V_b$ où V_a (resp. V_b) sont les positions controlées par A. On note W_a l'ensemble des positions finales gagnantes de A, puis on définit par récurrence :

- $\mathcal{A}_0 = W_a$
- $\forall j \in \mathbb{N}$, $\mathcal{A}_{j+1} = \mathcal{A}_j \cup \{ v \in V_a \mid \exists v' \in \mathcal{A}_j \mid (v, v') \in E \}$ $\cup \{ v \in V_b \mid \forall v' \in \mathcal{A}_j \mid (v, v') \in E \}$

L'attracteur de W_a est défini par

$$\mathcal{A} = \bigcup_{j \in \mathbb{N}} \mathcal{A}_j$$

Theorem

- ullet Le joueur A possède une stratégie gagnante depuis tout sommet de ${\cal A}.$
- Le joueur B possède une stratégie pour ne pas perdre (ie gagner ou faire match nul) depuis tout sommet de ^cA.

Remarques:

- On peut bien entendu définir de la même manière l'attracteur ${\cal B}$ du joueur ${\cal B}.$
- Un jeu est dit déterminé si $A \cup B = V$, c'est-à-dire si depuis n'importe quelle position, l'un des deux joueurs a une stratégie gagnante.
- Si le graphe de jeu est acyclique, fini et sans position de match nul, alors il est déterminé.

Algorithme de calcul de l'attracteur :

- On va parcourir le graphe en remontant depuis les positions gagnantes W_a de A (parcours dans le graphe transposé).
- On initialise au préalable pour chaque sommet de V_2 son degré sortant (nombre de coups jouables).
- Si on découvre un sommet de V_1 depuis un élément de \mathcal{A} , on l'ajoute à \mathcal{A} .
- Si on découvre un sommet de V_2 depuis un élément de \mathcal{A} , on diminue de 1 le nombre de coups jouables depuis ce sommet, et on ajoute le sommet à \mathcal{A} si ce nombre atteint 0.
- On relance le parcours à chaque ajout d'un sommet dans ${\mathcal A}$ depuis le sommet en question.

Algorithme de calcul de l'attracteur :

parcours(u)

Algorithme min-max

Limites de la méthode précédente :

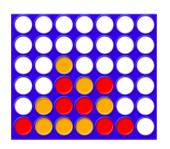
- Quand le graphe associé au jeu est très gros (jeu d'échec), il n'est pas possible de calculer l'attracteur sur une machine (pas assez de mémoire, ni de temps de calcul).
- Qui plus est, le graphe peut comporter des cycles ce qui n'assure pas la finitude d'une partie.

Nouvelle approche :

- On ne va travailler que sur une partie du graphe, en explorant uniquement les voies qui semblent le plus à même de faire gagner la partie.
- On a recourt à une heuristique pour évaluer dans quelle mesure une position nous est favorable ou pas.

Exemple d'heuristique (puissance 4)

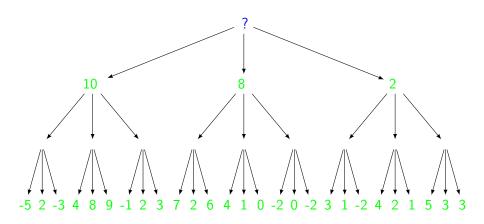
On attribue à chaque case de la grille une valeur égale au nombre de rangées de 4 cases auxquelles elle appartient. Pour un joueur donné, on additionne les points des cases qu'il occupe, puis on soustrait celles occupées par son adversaire.

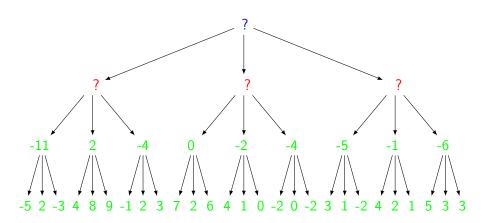


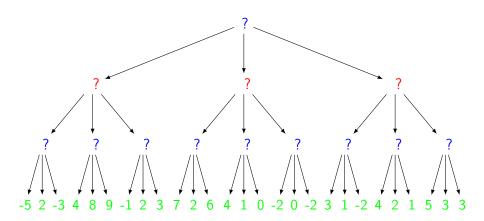
3	4	5	7	5	4	3
4	6	8	10	8	6	4
5	8	11	13	11	8	5
5	8	11	13	11	8	5
4	6	8	10	8	6	4
3	4	5	7	5	4	3

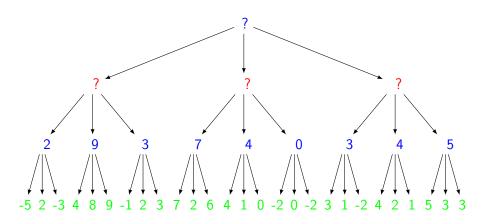
Points du joueur jaune :

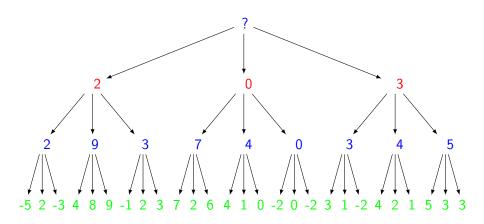
$$4+5+7+6+8+13+11-3-5-4-8-10-11-11=2$$

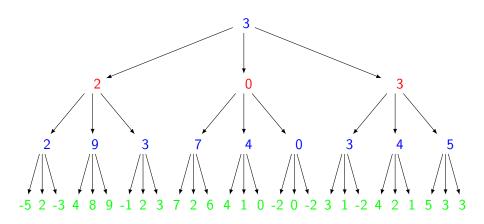












Algorithme min-max

Algorithme min-max :

si n est un næud max alors

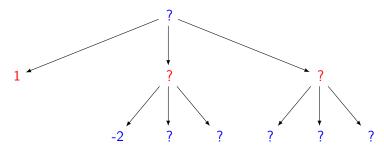
sinon

```
Entrée : Un nœud n d'un arbre associé à un jeu Min-Max, un entier p \geq 0 (profondeur de recherche), une fonction \mathcal S de score sur les feuilles, une heuristique \mathcal H sur les autres nœuds. Sortie : Une estimation de \mathcal E(n), score sur le nœud n de l'arbre. si n est une feuille alors \lfloor Renvoyer \mathcal S(n) si p=0 alors \lfloor Renvoyer \mathcal H(n)
```

Renvoyer $\max\{Minimax(f, p-1, S, H) \mid f \text{ fils de } n\}$

Elagage $\alpha - \beta$ (hors programme)

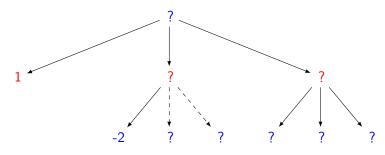
- La branche de gauche a été explorée entièrement, la valeur maximale pour le joueur bleu étant 1.
- La branche milieu-gauche a été explorée et la valeur −2 a été remontée.



• Dans ces conditions, on peut éviter d'explorer les deux sous branches milieu et droite du sous-arbre du milieu (coupure α).

Elagage $\alpha - \beta$ (hors programme)

- La branche de gauche a été explorée entièrement, la valeur maximale pour le joueur bleu étant 1.
- La branche milieu-gauche a été explorée et la valeur −2 a été remontée.



• Dans ces conditions, on peut éviter d'explorer les deux sous branches milieu et droite du sous-arbre du milieu (coupure α).

IA et apprentissage

L'intelligence artificielle, c'est quoi?

Un ensemble de techniques permettant à un ordinateur d'effectuer des tâches habituellement effectuées sans difficulté par les humains.

Exemples:

- reconnaitre des lettres, des symboles, des sons
- traduire des phrases

L'apprentissage, c'est quoi?

Des méthodes permettant à un ordinateur qui est déjà capable d'effectuer une certaine tâche d'améliorer ses performances avec l'expérience.

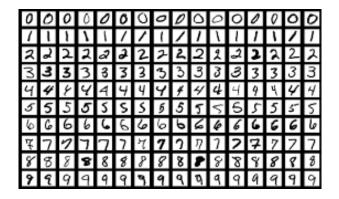
IA et apprentissage

Deux types d'apprentissage :

- Apprentissage supervisé :
 - ▶ On fournit à l'ordinateur une grosse quantité d'exemples, où chaque élément est donné avec la catégorie à laquelle il appartient.
 - La machine construit elle-même les paramètres qui lui permet de ranger chaque objet dans sa catégorie.
 - Une fois l'apprentissage terminé, la machine doit être capable de traiter de nouveaux exemples.
- Apprentissage non supervisé :
 - On fournit à l'ordinateur une grosse quantité d'exemples
 - La machine construit elle-même ses propres catégories!

Reconnaissance de chiffres

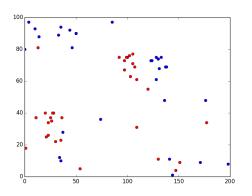
Extrait d'une base d'exemple :



A identifier :

- On construit une fonction de distance entre deux objets.
- Etant donné une donnée x à identifier, à l'aide d'un échantillon de données exemples :
 - On trie les exemples de l'échantillon par ordre croissant de distance à la donnée x.
 - ▶ On attribue à la donnée *x* la catégorie majoritaire parmi les *k* données exemples les plus proches.

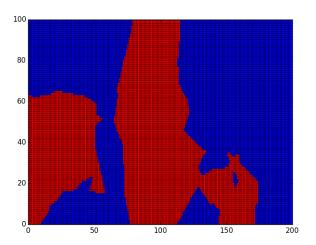
Exemple simplifié:



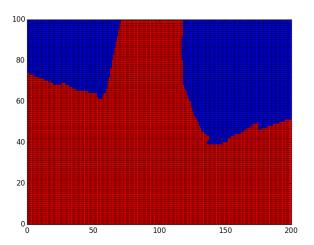
- On dispose d'une image dont une partie des pixels est coloriée.
- On souhaite colorier le reste de l'image de façon cohérente (respect des zones majoritairement bleues / rouges).

```
Fonction de coloration d'un pixel :
def d(p1,p2):
    return sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
def couleur(X,p,k):
    L = [(d(p,c[0]),c[1]) \text{ for c in } X]; L. sort()
    nb = 0
    for i in range(k):
         if L[i][1]=='r':
              nb+=1
         else:
             nb-=1
    if nb > 0:
         return 'r'
    else:
         return 'h'
```

Résultat pour k = 3:



Résultat pour k = 7:



Matrice de confusion

On dispose d'un algorithme $\mathcal A$ de classification en p classes et d'un ensemble de données X tests.

- Chaque donnéé $x \in X$ appartient à une unique classe réelle C_i pour un certain $i \in [1; p]$.
- L'algorithme $\mathcal A$ attribue à chaque $x \in X$ un indice $j \in [1; p]$ correspondant à une classe estimée .

Note : p = 2 dans l'exemple précédent (deux classes : bleu ou rouge).

Definition

La matrice de confusion est la matrice dont la case d'indices (i,j) contient le nombre de données appartenant à la classe réelle i et placée dans la classe j par \mathcal{A} .

- Plus la matrice de confusion est proche d'une matrice diagonale, plus l'algorithme de classification est efficace.
- La matrice de confusion permet d'adapter certains paramètres de l'algorithme pour améliorer son efficacité.

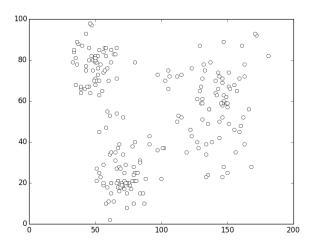
Problème (plus complexe):

- On dispose toujours d'un échantillon de données exemples.
- Les données ne sont plus rangées par catégories!

Objectif:

 l'ordinateur doit reformer des catégories, en regroupant dans un même groupe les données qui lui semblent proches.

Exemple simplifié (encore) :



Objectif:

- Regrouper les points du nuage par sous-ensembles de points proches.
- Pour simplifier le travail, le nombre k de sous-groupes va être choisi à l'avance.

Outils formels : Etant donné un sous-ensemble C de points,

• On appelle barycentre de l'ensemble le point

$$\mu_C = \frac{1}{\operatorname{card}(C)} \sum_{x \in C} x$$

• On appelle moment d'inertie de l'ensemble le réel

$$m_C = \sum_{x \in C} ||x - \mu_C||^2$$

Definition

Problème du partionnement : Etant donné un ensemble de points C et un entier k, déterminer une partition de C en k sous-ensembles C_1, \ldots, C_k qui minimisent la quantité

$$m = \sum_{i=1}^{k} m_{C_i}$$

Le nombre de partitions d'un ensemble à n éléments est donné par le nombre de bell

$$B_n = \sum_{k=0}^{+\infty} \frac{k^n}{k!} \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}} \left[\frac{n}{W(n)} \right]^{n+1/2} e^{n/W(n)-n-1}$$

où W est la fonction de Lambert définie par la réciproque de la restriction de $x \longmapsto xe^x$ à $]-1;+\infty[$.

- Une recherche exhaustive est inenvisageable.
- On se rabat sur un algorithme glouton.
 - ▶ Ne garantit pas de trouver la solution optimale
 - Procède par choix localement optimaux pour proposer une solution proche de l'optimal (sans garantie)
 - Converge bien plus rapidement

Pseudo-code:

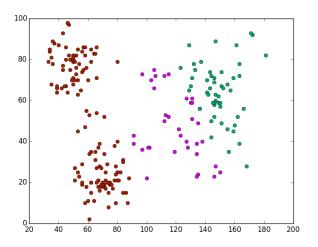
- **1** on choisit aléatoirement k centres μ_1, \ldots, μ_k parmi les n points.
- ② on répartit les n points dans k classes C_1, \ldots, C_k : chaque point x est mis dans l'ensemble C_j où j est l'indice du point le plus proche de x parmi μ_1, \ldots, μ_k .
- **3** on calcule les k barycentres μ'_1, \ldots, μ'_k des classes C_1, \ldots, C_j .
- Si $(\mu_1, \ldots, \mu_k) \neq (\mu'_1, \ldots, \mu'_k)$, remplacer (μ_1, \ldots, μ_k) par (μ'_1, \ldots, μ'_k) et reprendre à l'étape 2.

Points essentiels:

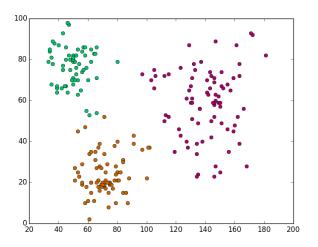
- If y a un nombre fini de partitions (C_1, \ldots, C_k) distinctes.
- (Admis) Si $(\mu_1, \ldots, \mu_k) \neq (\mu'_1, \ldots, \mu'_k)$, alors la somme m des moments d'inertie de la nouvelle répartition est strictement inférieure à celle de l'ancienne répartition.

L'algorithme termine!

Deux exemples de résultats :



Deux exemples de résultats :



Application : reconnaissance de chiffres

- 1797 images de chiffres de 0 à 9.
- barycentres des 10 classes renvoyées par l'algorithme des plus proches moyennes :

• Examen des classes : pourcentage d'image correspondant au chiffre de la classe :

Classe	0	1	5	7	8	4	3	2	9	6
%	99	60	91	85	45	98	87	85	56	97

Application: compression d'image

Image de départ : $256^3\approx 16\mbox{ millions}$ de couleurs

Objectif : réduire à 16 couleurs!

Application: compression d'image

Utilisation de l'algorithme des k moyennes :

- Chaque pixel est vu comme un élément de \mathbb{R}^3 .
- On applique l'algorithme des k moyennes pour répartir ces pixels en 16 sous-groupes de couleurs proches.
- On calcule le barycentre de chaque groupe, puis on remplace chaque pixel du groupe par le barycentre de son groupe.

Application: compression d'image

Image compressée

