II Convergence dans $\mathcal{M}_n(\mathbf{R})$

Soit u un endomorphisme d'un \mathbf{R} -espace vectoriel E de dimension finie. On suppose qu'il existe une norme $\|\cdot\|$ sur E telle que l'inégalité suivante soit satisfaite pour tout $x \in E$,

$$||u(x)|| \le ||x||.$$

Pour tout entier naturel k non nul, on considère l'endomorphisme

$$r_k = \frac{1}{k} \sum_{l=0}^{k-1} u^l = \frac{1}{k} (I_E + u + u^2 + \dots + u^{k-1}),$$

où I_E représente l'endomorphisme identité de E.

- 6. Soit $x \in \ker(u I_E)$. Déterminer $\lim_{k \to \infty} r_k(x)$.
- 7. Soit $x \in \text{Im}(u I_E)$. Montrer que $\lim_{k \to \infty} r_k(x) = 0_E$.
- 8. En déduire que $E = \ker(u I_E) \oplus \operatorname{Im}(u I_E)$.
- 9. Soit $x \in E$, un vecteur quelconque. Montrer que la suite $(r_k(x))_{k \in \mathbb{N}^*}$ converge vers un vecteur de E, que l'on notera p(x). Interpréter géométriquement l'application $p: E \longrightarrow E$ ainsi définie.

Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice carrée d'ordre n à coefficients réels. On suppose qu'il existe une norme, aussi notée $\|\cdot\|$, sur l'espace vectoriel $\mathcal{M}_{n,1}(\mathbf{R})$ identifié à \mathbf{R}^n , telle que, pour tout $X \in \mathcal{M}_{n,1}(\mathbf{R})$, on ait $\|AX\| \leq \|X\|$. Pour tout k entier naturel non nul, on considère la matrice

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l = \frac{1}{k} (I_n + A + A^2 + \dots + A^{k-1}),$$
 (2)

où I_n est la matrice identité dans $\mathcal{M}_n(\mathbf{R})$.

10. Montrer que la suite de matrices $(R_k)_{k \in \mathbb{N}^*}$ converge dans $\mathcal{M}_n(\mathbf{R})$ vers une matrice P, telle que $P^2 = P$.

III Matrices stochastiques

On fixe dans cette partie, un entier $n \geq 2$.

Définition 1 On notera $U \in \mathcal{M}_{n,1}(\mathbf{R})$, la matrice-colonne dont tous les coefficients sont égaux à 1.

Définition 2 Une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_n(\mathbf{R})$ est dite stochastique si elle vérifie les conditions suivantes :

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} \ge 0; \tag{3}$$

$$\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1.$$
(4)

Nous dirons aussi qu'une matrice-ligne $L = (\lambda_1, \dots, \lambda_n) \in \mathcal{M}_{1,n}(\mathbf{R})$ est stochastique lorsque ses coefficients λ_i sont tous positifs ou nuls, et de somme égale à 1.

- 11. Vérifier que la condition (4) équivaut à la condition AU = U.
- 12. En déduire que l'ensemble \mathcal{E} des matrices stochastiques (carrées d'ordre n) est stable par le produit matriciel.
- 13. Montrer que cet ensemble \mathcal{E} est une partie fermée et convexe de l'espace vectoriel $\mathcal{M}_n(\mathbf{R})$.

On munit l'espace $\mathcal{M}_{n,1}(\mathbf{R})$ de la norme $\|\cdot\|_{\infty}$ définie par $\|X\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$ si $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

14. Montrer que, si $A \in \mathcal{M}_n(\mathbf{R})$ est stochastique, alors on a $||AX||_{\infty} \le ||X||_{\infty}$ pour tout $X \in \mathcal{M}_{n,1}(\mathbf{R})$.

Dans les questions 15 à 22, on note $A \in \mathcal{M}_n(\mathbf{R})$ une matrice stochastique, et on suppose qu'il existe un entier naturel non nul p tel que la matrice A^p ait tous ses coefficients strictement positifs. Pour tout k entier naturel non nul, on posera

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l.$$

15. Montrer que $\ker(A^p - I_n)$ est de dimension 1.

Indication: soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \ker(A^p - I_n)$, soit $s \in [1, n]$ un indice tel que $x_s = \max_{1 \le j \le n} x_j$, on montrera que $x_j = x_s$ pour tout $j \in [1, n]$.

- 16. En déduire que $\ker(A I_n) = \operatorname{Vect}(U)$.
- 17. Montrer que, pour tout $k \in \mathbb{N}^*$, la matrice R_k est stochastique.
- 18. Montrer que la suite $(R_k)_{k \in \mathbf{N}^*}$ converge dans $\mathcal{M}_n(\mathbf{R})$ vers une matrice P, stochastique, de rang 1.
- 19. En déduire que l'on peut écrire P = UL, où $L = (\lambda_1, \dots, \lambda_n) \in \mathcal{M}_{1,n}(\mathbf{R})$ est une matrice-ligne stochastique.
- 20. Montrer que PA=P. En déduire que L est la seule matrice-ligne stochastique vérifiant LA=L.
- 21. Montrer que les coefficients de la matrice-ligne L sont tous strictement positifs.
- 22. Montrer que le réel 1 est valeur propre simple de la matrice A.

 On pourra utiliser le résultat de la question 8.