I. L'OPÉRATEUR DE TRANSLATION ET L'OPÉRATEUR DE DIFFÉRENCE

I.A.1 Soit $P \in \mathbb{R}_n[X]$ un polynôme non nul. Il s'écrit $P = \sum_{k=0}^d a_k X^k$, avec $a_k \in \mathbb{R}$ pour tout $k \in [0, d]$, $d = \deg(P) \in \mathbb{N}$ et $a_d = \operatorname{cd}(P) \neq 0$. Il en découle que

$$\tau(P) = P(X+1) = \sum_{k=0}^{d} a_k (X+1)^k = a_d (X+1)^d + R_1$$

où $deg(R_1) < d$. De plus, on a d'après la formule du binôme de Newton

$$(X+1)^d = \sum_{\ell=0}^d \binom{d}{\ell} X^{\ell} = X^d + R_2$$

avec $deg(R_2) < d$ également. De ce fait,

$$\tau(P) = a_d X^d + R_1 + a_d R_2 = a_d X^d + R$$

où le polynôme $R = R_1 + a_d R_2$ vérifie $\deg(R) < d$. Comme $a_d \neq 0$, ceci montre que $\tau(P)$ est un polynôme non nul de degré d et de coefficient dominant a_d . Ainsi,

Pour tout
$$P \in \mathbb{R}_n[X]$$
 non nul, $deg(\tau(P)) = deg(P)$ et $cd(\tau(P)) = cd(P)$.

I.A.2 Soit $P \in \mathbb{R}_n[X]$. Considérons la propriété \mathscr{P} définie pour $k \in \mathbb{N}$ par

$$\mathscr{P}(k)$$
: « $\tau^k(\mathbf{P}) = \mathbf{P}(\mathbf{X} + k)$ »

- $\mathscr{P}(0)$ est vraie puisque $\tau^0(P) = P = P(X + 0)$.
- $\underline{\mathscr{P}(k)} \Longrightarrow \underline{\mathscr{P}(k+1)}$: supposons que la propriété \mathscr{P} est vraie au rang $k \in \mathbb{N}$. D'après la proposition $\underline{\mathscr{P}(k)}$, on a $\tau^k(P) = P(X+k)$ d'où

$$\tau^{k+1}(P) = \tau(\tau^k(P)) = \tau(P(X+k)) = P(X+k+1)$$

Ainsi, la proposition $\mathcal{P}(k+1)$ est vraie.

• Conclusion: d'après le principe de récurrence, la proposition $\mathscr{P}(k)$ est vraie pour tout $k \in \mathbb{N}$, ce qui signifie que

$$\forall P \in \mathbb{R}_n[X] \quad \forall k \in \mathbb{N} \qquad \tau^k(P) = P(X+k)$$

I.A.3 Par convention, on pose
$$\binom{m}{p} = 0$$
 dès que $p > m$.

Pour déterminer cette matrice M, il faut calculer les images par τ des différents éléments de la base $(P_k)_{k\in \llbracket 1\,;\, n+1\rrbracket}$. Soit $j\in \llbracket 1\,;n+1\rrbracket$. Comme $P_j=X^{j-1}$, on déduit de la formule du binôme de Newton que

$$\tau(\mathbf{P}_j) = (\mathbf{X}+1)^{j-1} = \sum_{k=0}^{j-1} \binom{j-1}{k} \mathbf{X}^k = \sum_{i=1}^{j} \binom{j-1}{i-1} \mathbf{P}_i = \sum_{i=1}^{n+1} \binom{j-1}{i-1} \mathbf{P}_i$$

en utilisant le changement d'indice i = k + 1 et la convention rappelée plus haut. Les coefficients de la matrice M de τ dans la base $(P_k)_{k \in [\![1]\!]}$ sont donc

$$\forall (i,j) \in [\![\, 1 \, ; n+1 \,] \!]^2 \qquad \mathcal{M}_{i,j} = \begin{pmatrix} j-1 \\ i-1 \end{pmatrix}$$

On reconnaît ici les coefficients binomiaux apparaissant dans le triangle de Pascal. En fait, M est tout simplement la transposée de ce triangle.

I.A.4] Comme $M_{i,j} = 0$ pour i > j d'après la question I.A.3, la matrice M est triangulaire supérieure. Son spectre (qui est aussi celui de l'endomorphisme τ) est alors constitué de ses termes diagonaux. Or,

$$\forall\,i\in [\![\,1\,;n+1\,]\!] \qquad \mathbf{M}_{i,i}=\binom{i-1}{i-1}=1$$

Ainsi.

L'ensemble des valeurs propres de τ est sp $(\tau) = \{1\}$.

On peut remarquer que tout polynôme constant vérifie $\tau(P) = P(X+1) = P$. De ce fait, le sous-espace propre associé à la valeur propre 1 contient $\mathbb{R}_0[X]$.

Raisonnons par l'absurde et supposons que l'endomorphisme τ est diagonalisable. Comme sa seule valeur propre est 1, il admet I_{n+1} pour matrice dans une base de vecteurs propres, si bien que $\tau = \mathrm{Id}_{\mathbb{R}_n[X]}$ d'où $M = I_{n+1}$. Ceci contredit le résultat de la question I.A.3. On a ainsi prouvé par l'absurde que

L'endomorphisme τ n'est pas diagonalisable.

I.A.5 Pour tous P et Q dans $\mathbb{R}_n[X]$, on a

$$Q = \tau(P) \iff Q(X) = P(X+1)$$

$$\iff Q(X-1) = P(X)$$

$$Q = \tau(P) \iff P = Q(X-1)$$

Ceci montre que

L'application τ est bijective et sa réciproque est $\tau^{-1} \colon P \longmapsto P(X-1)$.

En procédant par récurrence comme à la question I.A.2, on établit que

$$\forall P \in \mathbb{R}_n[X] \quad \forall k \in \mathbb{N} \qquad \tau^{-k}(P) = (\tau^{-1})^k (P) = P(X - k)$$

Ceci étend aux entiers négatifs la relation prouvée lors de cette question, si bien que

$$\forall P \in \mathbb{R}_n[X] \quad \forall k \in \mathbb{Z} \qquad \tau^k(P) = P(X+k)$$

I.A.6 L'endomorphisme τ étant bijectif, sa matrice M est inversible et son inverse M^{-1} est la matrice de l'endomorphisme τ^{-1} dans la base $(P_k)_{k \in [\![1\,;n+1\,]\!]}$. Afin de la déterminer, nous allons calculer, comme à la question I.A.3, les images par τ^{-1} des différents éléments de cette base. Pour tout $j \in [\![1\,;n+1\,]\!]$, on a

$$\tau^{-1}(\mathbf{P}_j) = (\mathbf{X} - 1)^{j-1} = \sum_{k=0}^{j-1} {j-1 \choose k} (-1)^{j-1-k} \mathbf{X}^k = \sum_{i=1}^{j} {j-1 \choose i-1} (-1)^{j-i} \mathbf{P}_i$$

en utilisant le changement d'indice i = k + 1, si bien que

$$\tau^{-1}(\mathbf{P}_j) = \sum_{i=1}^{n+1} \binom{j-1}{i-1} (-1)^{j-i} \mathbf{P}_i$$

Les coefficients de la matrice \mathcal{M}^{-1} de τ^{-1} dans la base $(\mathcal{P}_k)_{k\in [\![1 \,]; \, n+1 \,]\![}$ sont donc

$$\boxed{ \forall \, (i,j) \in [\![\,1\,;n+1\,]\!]^2 \qquad \left(\mathcal{M}^{-1}\right)_{i,j} = (-1)^{j-i} \begin{pmatrix} j-1\\i-1 \end{pmatrix} }$$

Notons que cette matrice est également triangulaire supérieure.

I.A.7 Posons $U = (u_0, u_1, \dots, u_n)^{\top}$ et $V = (v_0, v_1, \dots, v_n)^{\top} \in \mathbb{R}^{n+1}$. On a

$$\forall k \in [0; n] \qquad v_k = \sum_{\ell=0}^k \binom{k}{\ell} u_\ell = \sum_{\ell=0}^n \binom{k}{\ell} u_\ell$$

soit, en effectuant les changements d'indices j=k+1 et $i=\ell+1$

$$\forall j \in [1; n+1]$$
 $v_{j-1} = \sum_{i=1}^{n+1} {j-1 \choose i-1} u_{i-1}$

On reconnaît ici l'écriture du produit matriciel V = MU, si bien que

La matrice
$$Q = M$$
 satisfait l'équation.

I.A.8] Reprenons les notations U et V introduites à la question I.A.7. On sait que V = MU d'après le résultat de cette question et que M est inversible d'après la question I.A.6. De ce fait, $U = M^{-1}V$ soit

$$\forall j \in [1; n+1]$$
 $u_{j-1} = \sum_{i=1}^{n+1} (-1)^{j-i} {j-1 \choose i-1} v_{i-1}$

En effectuant les changements d'indices k=j-1 et $\ell=i-1$, on obtient

$$\forall k \in [0; n] \qquad u_k = \sum_{\ell=0}^{n} (-1)^{k-\ell} \binom{k}{\ell} v_{\ell} = \sum_{\ell=0}^{k} (-1)^{k-\ell} \binom{k}{\ell} v_{\ell}$$

Enfin, ceci étant valable pour tout entier $n \in \mathbb{N}^*$, on en déduit que

$$\forall k \in \mathbb{N} \qquad u_k = \sum_{\ell=0}^k (-1)^{k-\ell} \begin{pmatrix} k \\ \ell \end{pmatrix} v_\ell$$

I.A.9 Dans cette question, $u_j = \lambda^j$ pour tout $j \in \mathbb{N}$. D'après la relation (I.1), on a

$$\forall k \in \mathbb{N} \qquad v_k = \sum_{j=0}^k \binom{k}{j} \lambda^j = \sum_{j=0}^k \binom{k}{j} \lambda^j \, 1^{k-j} = (\lambda+1)^k$$

grâce à la formule du binôme de Newton. Ainsi, la suite $(v_k)_{k\in\mathbb{N}}$ est définie par

$$\forall k \in \mathbb{N} \qquad v_k = (\lambda + 1)^k$$

Pour tout $k \in \mathbb{N}$, on a d'après la formule du binôme de Newton

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j = \sum_{j=0}^{k} \binom{k}{j} (\lambda + 1)^j (-1)^{k-j} = (\lambda + 1 - 1)^k = u_k$$

donc Les suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ vérifient bien la relation (I.2).

I.B.1 Soit $P \in \mathbb{R}_n[X]$ un polynôme non constant. Il s'écrit $P = \sum_{k=0}^d a_k X^k$, avec $a_k \in \mathbb{R}$ pour tout $k \in [0; d]$, $d = \deg(P) \in \mathbb{N}^*$ et $a_d = \operatorname{cd}(P) \neq 0$. Par linéarité de δ ,

$$\delta(\mathbf{P}) = \sum_{k=0}^{d} a_k \, \delta\left(\mathbf{X}^k\right) = \sum_{k=1}^{d} a_k \, \delta\left(\mathbf{X}^k\right)$$

car $\delta(1) = 0$. Or, d'après la formule du binôme de Newton, pour tout $k \in [1;d]$,

$$\delta(X^k) = (X+1)^k - X^k = \sum_{\ell=0}^{k-1} \binom{k}{\ell} X^{\ell} = kX^{k-1} + \sum_{\ell=0}^{k-2} \binom{k}{\ell} X^{\ell}$$

est un polynôme de degré k-1 et de coefficient dominant k. On en déduit que le terme dominant de $\delta(P)$ est celui de $a_d \delta(X^d)$. Ceci montre que $\delta(P)$ est un polynôme non nul de degré d-1 et de coefficient dominant da_d . Ainsi,

Pour tout polynôme
$$P \in \mathbb{R}_n[X]$$
 non constant, on a $\deg(\delta(P)) = \deg(P) - 1$ et $\operatorname{cd}(\delta(P)) = \deg(P) \operatorname{cd}(P)$.

I.B.2 D'après la question I.B.1, si $P \in \mathbb{R}_n[X]$ est non constant, alors $\delta(P) \neq 0$. Par contraposée, $\delta(P) = 0$ implique que P est constant. Réciproquement, si P est constant, on a P(X + 1) = P(X) d'où $\delta(P) = 0$. Il s'ensuit que $\delta(P) = 0$ si, et seulement si, P est constant. Autrement dit,

$$\mathrm{Ker}\,(\delta)=\mathbb{R}_0[X]$$

Intéressons-nous maintenant à $\operatorname{Im}(\delta)$.

- Soit $P \in \mathbb{R}_n[X]$. Si le polynôme P est constant, $\delta(P) = 0$. Sinon, $\delta(P)$ est un polynôme de degré $\deg(P) 1 \le n 1$. Dans tous les cas, on a $\delta(P) \in \mathbb{R}_{n-1}[X]$, si bien que $\operatorname{Im}(\delta) \subset \mathbb{R}_{n-1}[X]$.
- Appliquons le théorème du rang à l'endomorphisme δ : on obtient

$$n + 1 = \dim \mathbb{R}_n[X] = \dim \operatorname{Ker}(\delta) + \operatorname{rg}(\delta) = 1 + \dim \operatorname{Im}(\delta)$$

d'où $\dim \operatorname{Im}(\delta) = n = \dim \mathbb{R}_{n-1}[X]$

Comme $\operatorname{Im}(\delta) \subset \mathbb{R}_{n-1}[X]$ et que $\dim \operatorname{Im}(\delta) = \dim \mathbb{R}_{n-1}[X]$, on peut affirmer que

$$\boxed{\operatorname{Im}(\delta) = \mathbb{R}_{n-1}[X]}$$

| I.B.3 | Soit P un polynôme non nul de degré d.

- D'après la question I.B.1, si P est non constant, $deg(\delta(P)) = deg(P) 1$.
- D'après la question I.B.2, si P est constant, $\delta(P) = 0$.

On en déduit, par une récurrence immédiate, que $\delta^k(P)$ est de degré d-k (et donc non nul) pour tout $k \in [0; d]$ et que $\delta^k(P) = 0$ pour tout k > d.

Soit maintenant $j \in [1; n]$.

• Pour tout polynôme P non nul, on a d'après ce qui précède

$$\delta^{j}(\mathbf{P}) = 0 \iff j > \deg(\mathbf{P}) \iff \mathbf{P} \in \mathbb{R}_{j-1}[\mathbf{X}]$$

si bien que Ker $(\delta) = \mathbb{R}_{j-1}[X]$ puisque $0 \in \text{Ker}(\delta) \cap \mathbb{R}_{j-1}[X]$.

• Appliquons le théorème du rang à l'endomorphisme δ^j de $\mathbb{R}_n[X]$: on obtient

$$n+1 = \dim \operatorname{Ker}(\delta^{j}) + \operatorname{rg}(\delta^{j}) = j + \dim \operatorname{Im}(\delta^{j})$$

d'où
$$\dim \operatorname{Im}(\delta^{j}) = n + 1 - j = \dim \mathbb{R}_{n-j}[X]$$

• Soit enfin $P \in \mathbb{R}_n[X]$. Si deg(P) < j, on a $\delta^j(P) = 0$. Sinon,

$$deg(\delta^{j}(P)) = deg(P) - j \leq n - j$$

Dans tous les cas, $\delta^j(P) \in \mathbb{R}_{n-j}[X]$, ce qui montre que Im $(\delta^j) \subset \mathbb{R}_{n-j}[X]$. Ces deux sous-espaces vectoriels ayant la même dimension, on en déduit que Im $(\delta^j) = \mathbb{R}_{n-j}[X]$. Par conséquent,

$$\forall j \in [1; n]$$
 $\operatorname{Ker}(\delta^{j}) = \mathbb{R}_{j-1}[X]$ et $\operatorname{Im}(\delta^{j}) = \mathbb{R}_{n-j}[X]$

I.B.4 Par définition, $\delta = \tau - \text{Id.}$ Comme ces deux endomorphismes commutent, on déduit de la formule du binôme de Newton que

$$\forall k \in \mathbb{N} \qquad \delta^k = (\tau - \mathrm{Id})^k = \sum_{j=0}^k \binom{k}{j} \tau^j (-\mathrm{Id})^{k-j} = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \tau^j$$

d'où

$$\forall \mathbf{P} \in \mathbb{R}_n[\mathbf{X}] \quad \forall k \in \mathbb{N} \qquad \delta^k(\mathbf{P}) = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \tau^j(\mathbf{P})$$

I.B.5 Soit $P \in \mathbb{R}_{n-1}[X]$. D'après la question I.B.3, on a $\mathbb{R}_{n-1}[X] = \text{Ker}(\delta^n)$ donc $\delta^n(P) = 0$. On déduit alors des questions I.B.4 et I.A.2 que

$$0 = \delta^n(\mathbf{P}) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \tau^j(\mathbf{P}) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \mathbf{P}(\mathbf{X} + j)$$

En appliquant cette relation pour X = 0, on obtient

$$\forall P \in \mathbb{R}_{n-1}[X] \qquad \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0$$

I.B.6.a Par hypothèse, $\delta = u^2$ donc $\delta^2 = u^4$ d'où

$$u\circ \delta^2=u\circ u^4=u^5=u^4\circ u=\delta^2\circ u$$

De ce fait,

Les applications
$$u$$
 et δ^2 commutent.

Plus généralement, si u est un endomorphisme d'un espace vectoriel E, on montre que tout polynôme en u commute avec u.

I.B.6.b D'après la question I.B.4, on a $\mathbb{R}_1[X] = \text{Ker}(\delta^2)$. Les endomorphismes u et δ^2 commutant d'après la question I.B.6.a, le noyau et l'image de l'un sont stables par l'autre. En particulier,

Le sous-espace vectoriel $\mathbb{R}_1[\mathbf{X}]$ est stable par u.

I.B.6.c Raisonnons par l'absurde et supposons qu'il existe $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})$

telle que $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Il s'ensuit que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

d'où
$$a^2 + bc = 0$$
 $b(a+d) = 1$ $c(a+d) = 0$ et $d^2 + bc = 0$

Comme b(a+d)=1, alors $a+d\neq 0$. Par conséquent, c(a+d)=0 implique c=0. On en déduit que $a^2=d^2=0$ d'où

$$a = d = 0 \qquad \text{et} \qquad b(a+d) = 0$$

Ceci contredit b(a+d)=1. De ce fait,

Il n'existe pas de matrice
$$A \in \mathcal{M}_2(\mathbb{R})$$
 telle que $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

I.B.6.d D'après la question I.B.6.b, le sous-espace vectoriel $\mathbb{R}_1[X]$ est stable par u. Notons $A \in \mathcal{M}_2(\mathbb{R})$ la matrice dans la base $\{1, X\}$ de l'endomorphisme induit par u sur $\mathbb{R}_1[X]$. Comme $u^2 = \delta$, A^2 est la matrice dans la base $\{1, X\}$ de l'endomorphisme induit par δ sur $\mathbb{R}_1[X]$. Or, $\delta(1) = 0$ et $\delta(X) = 1$. Il en découle que

$$A \in \mathscr{M}_2(\mathbb{R})$$
 et $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

ce qui contredit le résultat de la question I.B.6.c. Ceci achève le raisonnement par l'absurde de la question I.B.6 et permet d'affirmer que

Il n'existe pas d'endomorphisme u de $\mathbb{R}_n[X]$ tel que $u \circ u = \delta$.

I.B.7.a Soit P un polynôme non nul de degré $d \leq n$. On a vu à la question I.B.3 que $\delta^k(P)$ est de degré d-k pour tout $k \in [0;d]$. Puisque la famille $(P,\delta(P),\ldots,\delta^d(P))$ est ainsi constituée de polynômes de degrés échelonnés,

Pour tout polynôme non nul P de degré
$$d \le n$$
, la famille $(P, \delta(P), \dots, \delta^d(P))$ est libre.

Cette famille \mathscr{F} est de cardinal d+1. De plus, elle est contenue dans $\mathbb{R}_d[X]$, qui est un espace vectoriel de dimension d+1. C'est donc une base de cet espace. En particulier, elle est génératrice d'où $\mathrm{Vect}(\mathscr{F}) = \mathbb{R}_d[X]$. Il en découle que

Pour tout polynôme non nul P de degré
$$d \leq n$$
, on a Vect $(P, \delta(P), \dots, \delta^d(P)) = \mathbb{R}_d[X]$.

I.B.7.b Soit V un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$. Considérons la restriction de l'application deg: $Q \mapsto \deg(Q)$ à l'ensemble non vide $V' = V \setminus \{0\}$. Elle ne prend qu'un nombre fini de valeurs, car celles-ci appartiennent toutes à [0;n]. De ce fait, elle atteint un maximum. Soit alors $P \in V'$ tel que

$$d = \deg(P) = \max \{ \deg(Q) \mid Q \in V' \}$$

On a $d \leq n$ puisque $P \in \mathbb{R}_n[X]$. De plus, V étant stable par δ , les polynômes $P, \delta(P), \ldots, \delta^d(P)$ appartiennent à V. Ils engendrent donc un sous-espace de V qui, d'après la question I.B.7.a, est $\mathbb{R}_d[X]$. De ce fait, $\mathbb{R}_d[X] \subset V$. Réciproquement, comme les polynômes non nuls de V sont de degré inférieur ou égal à d, on a $V \subset \mathbb{R}_d[X]$. Par conséquent, $V = \mathbb{R}_d[X]$. Ainsi,

Si V est un sous-espace vectoriel de
$$\mathbb{R}_n[X]$$
 stable par δ et non réduit à $\{0\}$, il existe un entier $d \in [0; n]$ tel que $V = \mathbb{R}_d[X]$.

Pour déterminer les sous-espaces de $\mathbb{R}_n[X]$ stables par δ , on a uniquement utilisé la relation $\deg(\delta(P)) = \deg(P) - 1$ (si P est un polynôme non constant). De la même façon, on montre que les seuls sous-espaces de $\mathbb{R}_n[X]$ stables par l'opérateur de dérivation D: $P \longmapsto P'$ sont les $\mathbb{R}_d[X]$, avec $d \in [0, n]$.

II. APPLICATIONS EN COMBINATOIRE

II.A.1 Soient A et B deux ensembles finis. D'après le cours, s'il existe une surjection de A sur B, alors Card A \geqslant Card B. Par contraposée, on en déduit qu'il n'existe pas de surjection de [1; p] sur [1; n] lorsque p < n. En conséquence,

$$\boxed{\forall \, p \in \llbracket \, 1 \, ; n-1 \, \rrbracket \qquad \mathrm{S}(p,n) = 0}$$

 $\boxed{\textbf{II.A.2}}$ Soient A et B deux ensembles finis de même cardinal. D'après le cours, toute surjection de A sur B est une bijection. De ce fait, S(n,n) est le nombre de permutations de $\llbracket 1;n \rrbracket$, si bien que

$$S(n,n) = n!$$

II.A.3 Une application est une surjection de [1; n+1] sur [1; n] si, et seulement si, chaque élément de [1; n] possède au moins un antécédent dans [1; n+1]. Pour tout $k \in [1; n]$, notons a_k le nombre d'antécédents de l'élément k. Déjà, $a_k \ge 1$. De plus, comme tout élément de [1; n+1] possède une image dans [1; n], on a

$$\sum_{k=1}^{n} a_k = n+1$$
 d'où $\sum_{k=1}^{n} (a_k - 1) = 1$

Ceci montre qu'un des nombres positifs a_k-1 vaut 1 et que tous les autres sont nuls. Ainsi, un seul élément de $[\![1];n]\!]$ possède deux antécédents tandis que les autres n'en possèdent qu'un. Voici maintenant comment construire une telle surjection.

- On commence par choisir l'élément e de $[\![1];n]\!]$ ayant deux antécédents, ce qui nous donne n possibilités.
- On choisit ensuite ses deux antécédents a_1 et a_2 dans [1; n+1], ce qui nous laisse $\binom{n+1}{2} = \frac{n(n+1)}{2}$ possibilités.
- On attribue enfin à chacun des n-1 éléments de $[1; n+1] \setminus \{a_1; a_2\}$ une image dans $[1; n] \setminus \{e\}$, ce qui revient à construire une bijection entre deux ensembles de cardinal n-1. Il y a donc (n-1)! possibilités.

Il en découle que

$$S(n+1,n) = n \times \frac{n(n+1)}{2} \times (n-1)! = \frac{n(n+1)n!}{2}$$

[II.B.1] Soient A et B deux ensembles finis. D'après le cours, il existe (Card B) Card A applications de A dans B. De ce fait,

Il y a
$$n^p$$
 applications de $[1;p]$ dans $[1;n]$.

II.B.2 Fixons p et n dans \mathbb{N}^* tels que $p \ge n$. Pour tout $k \in [1; n]$, on note F_k le nombre (éventuellement nul) d'applications φ de [1; p] dans [1; n] telles que $\operatorname{Card} \varphi([1; p]) = k$. Voyons comment construire une telle application.

• Il faut d'abord choisir $\varphi(\llbracket 1;p \rrbracket)$, qui est une partie de cardinal k de $\llbracket 1;n \rrbracket$. On a $\binom{n}{k}$ possibilités.

• Une fois cet ensemble choisi, il nous reste à déterminer φ , qui est une surjection de $[\![1;p]\!]$ sur $\varphi([\![1;p]\!])$. Comme cet ensemble est de cardinal k, il est en bijection avec $[\![1;k]\!]$. On a donc S(p,k) possibilités.

Par conséquent,

$$F_k = \binom{n}{k} S(p, k)$$

Enfin, $\sum_{k=1}^{n} F_k$ étant le nombre d'applications de [1;p] dans [1;n], on déduit de la question II.B.1 que

$$n^p = \sum_{k=1}^n \binom{n}{k} S(p,k)$$

Comme S(p,0)=0 par convention, on peut sommer à partir de k=0. De plus, la relation obtenue est encore valable pour n=0, si bien que

$$\forall p \geqslant n \qquad n^p = \sum_{k=0}^n \binom{n}{k} S(p,k)$$

La condition $p \ge n$ n'intervient pas du tout dans le raisonnement qui précède. En fait, le résultat établi est valable pour tout entier $n \in \mathbb{N}$.

II.B.3 Fixons $p \in \mathbb{N}^*$, puis posons $v_n = n^p$ pour tout $n \in \mathbb{N}$ et $u_k = S(p, k)$ pour tout $k \in \mathbb{N}$. Le résultat de la question II.B.2, qui est valable pour tout $n \in \mathbb{N}$, s'écrit

$$\forall n \in \mathbb{N}$$
 $v_n = \sum_{k=0}^n \binom{n}{k} u_k$

Autrement dit, les suites $(v_n)_{n\in\mathbb{N}}$ et $(u_k)_{k\in\mathbb{N}}$ vérifient la relation (I.1). D'après la formule d'inversion établie à la question I.A.8, on a

$$u_n = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} v_k$$

pour tout $n \in \mathbb{N}$. En particulier,

$$\forall p \geqslant n \qquad S(p,n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{p}$$

II.B.4 Supposons que p < n. D'après la question II.A.1, S(p, n) = 0. Par ailleurs, le polynôme $P = X^p$ appartient à $\mathbb{R}_{n-1}[X]$. On déduit alors de la question I.B.5 que

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^p = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} P(k) = 0$$

donc

$$S(p,n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{p}$$

Autrement dit,

Le résultat de la question II.B.3 est encore valable lorsque p < n.

II.C D'après les résultats des questions II.B.3, II.A.2 et II.A.3, on a

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^n = S(n, n) = n!$$

et

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{n+1} = S(n+1,n) = \frac{n(n+1)n!}{2}$$

III. ÉTUDE D'UNE FAMILLE DE POLYNÔMES

Les polynômes étudiés dans cette partie sont appelés polynômes de Hilbert.

III.A.1 Par définition, on a $\deg(H_k) = k$ pour tout entier $k \in [0; n]$. La famille $(H_k)_{k \in [0; n]}$ est ainsi constituée de polynômes de degrés deux à deux distincts, donc c'est une famille libre de $\mathbb{R}_n[X]$. Son cardinal étant égal à $n+1 = \dim \mathbb{R}_n[X]$, c'est même une base. Par conséquent,

La famille
$$(H_k)_{k \in \llbracket 0; n \rrbracket}$$
 est une base de $\mathbb{R}_n[X]$.

III.A.2 Le polynôme H_0 est constant donc $\delta(H_0) = 0$. Soit maintenant $k \in [1; n]$. Calculons $\tau(H_k)$, en réorganisant les facteurs pour faire apparaître H_k et H_{k-1} :

$$\tau(\mathbf{H}_{k}) = \frac{1}{k!} \prod_{j=0}^{k-1} (\mathbf{X} + 1 - j)$$

$$= \frac{1}{k!} \prod_{\ell=-1}^{k-2} (\mathbf{X} - \ell) \qquad \text{en posant } \ell = j - 1$$

$$= \frac{1}{k!} (\mathbf{X} + 1) \prod_{\ell=0}^{k-2} (\mathbf{X} - \ell)$$

$$= \frac{1}{k!} \left[(\mathbf{X} + 1 - k) \prod_{\ell=0}^{k-2} (\mathbf{X} - \ell) + k \prod_{\ell=0}^{k-2} (\mathbf{X} - \ell) \right]$$

$$= \frac{1}{k!} \prod_{\ell=0}^{k-1} (\mathbf{X} - \ell) + \frac{1}{(k-1)!} \prod_{\ell=0}^{k-2} (\mathbf{X} - \ell)$$

$$\tau(\mathbf{H}_{k}) = \mathbf{H}_{k} + \mathbf{H}_{k-1}$$

si bien que $\delta(H_k) = H_{k-1}$. Ainsi,

$$\delta(\mathbf{H}_0) = 0 \text{ et } \delta(\mathbf{H}_k) = \mathbf{H}_{k-1} \text{ pour tout } k \in [1; n].$$

III.A.3 On déduit de la question précédente que $\tau(H_0) = H_0$ et $\tau(H_k) = H_k + H_{k-1}$ pour tout $k \in [1; n]$. De ce fait, l'endomorphisme τ admet M' pour matrice dans la base $(H_k)_{k \in [0; n]}$.

Or, d'après la question I.A.3, τ admet M pour matrice dans la base $(P_k)_{k \in [0; n]}$. Comme elles représentent le même endomorphisme dans des bases différentes,

Les matrices M et M' sont semblables.

III.A.4 Par récurrence immédiate, on déduit de la question III.A.2 que

$$\forall (k,\ell) \in [0;n]^2 \qquad \delta^k(\mathbf{H}_{\ell}) = \begin{cases} 0 & \text{si } k > \ell \\ \mathbf{H}_{\ell-k} & \text{sinon} \end{cases}$$

En particulier, $\delta^k(\mathbf{H}_{\ell})(0)$ vaut 0 si $k > \ell$, $\mathbf{H}_0(0) = 1$ si $k = \ell$ et $\mathbf{H}_{\ell-k}(0) = 0$ si $k > \ell$, puisque tous les polynômes \mathbf{H}_j , pour $j \in [1; n]$, admettent 0 pour racine simple. Ceci étant vrai pour tout $\ell \in [0; n]$, il en découle que

$$\forall (k,\ell) \in [0;n]^2 \qquad \delta^k(\mathbf{H}_{\ell})(0) = \begin{cases} 1 & \text{si } k = \ell \\ 0 & \text{sinon} \end{cases}$$

III.A.5 Soit $P \in \mathbb{R}_n[X]$. Comme la famille $(H_k)_{k \in [0; n]}$ est une base de $\mathbb{R}_n[X]$ d'après la question III.A.1, il existe des réels a_0, \ldots, a_n uniques tels que $P = \sum_{\ell=0}^n a_\ell H_\ell$.

Pour tout $k \in [0; n]$, on a alors $\delta^k(P) = \sum_{\ell=0}^n a_\ell \, \delta^k(H_\ell)$ par linéarité de δ , d'où

$$\delta^{k}(\mathbf{P})(0) = \sum_{\ell=0}^{n} a_{\ell} \, \delta^{k}(\mathbf{H}_{\ell})(0) = a_{k}$$

d'après la question III.A.4. Par conséquent,

$$\forall P \in \mathbb{R}_n[X]$$
 $P = \sum_{k=0}^n \delta^k(P)(0) H_k$

Ainsi, les coordonnées d'un polynôme P de $\mathbb{R}_n[X]$ dans la base $(H_k)_{k \in \llbracket 0; n \rrbracket}$ sont $(\delta^k(P)(0))_{k \in \llbracket 0; n \rrbracket}$.

III.B.1 Il faut commencer par calculer les images de ce polynôme par δ^k pour $k \in [0;3]$. Pour cela, appliquons les résultats de la partie I dans le cas n=3. L'endomorphisme τ a pour matrice dans la base canonique

$$\mathbf{M} = \left(\begin{pmatrix} j-1\\i-1 \end{pmatrix} \right)_{1 \leqslant i,j \leqslant 4} = \begin{pmatrix} 1 & 1 & 1 & 1\\0 & 1 & 2 & 3\\0 & 0 & 1 & 3\\0 & 0 & 0 & 1 \end{pmatrix}$$

donc l'endomorphisme $\delta = \tau - id$ a pour matrice

$$\Delta = M - I_4 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Posons $Q=X^3+2X^2+5X+7$. Comme les coordonnées de Q dans la base canonique sont $(7,5,2,1)^{\top}$, celles de $\delta(Q)$ sont

$$\Delta \begin{pmatrix} 7 \\ 5 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \\ 3 \\ 0 \end{pmatrix}$$

Celles de $\delta^2(Q) = \delta(\delta(Q))$ sont

$$\Delta \begin{pmatrix} 8 \\ 7 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ 6 \\ 0 \\ 0 \end{pmatrix}$$

Et celles de $\delta^3(Q) = \delta(\delta^2(Q))$ sont

$$\Delta \begin{pmatrix} 10 \\ 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 10 \\ 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Ainsi, $\delta(Q)=3X^2+7X+8$, $\delta^2(Q)=6X+10$ et $\delta^3(Q)=6$. On déduit alors de la question III.A.5 que

Les coordonnées du polynôme
$$Q = X^3 + 2X^2 + 5X + 7$$
 dans la base (H_0, H_1, H_2, H_3) de $\mathbb{R}_3[X]$ sont $(7, 8, 10, 6)$.

III.B.2 D'après la question III.B.1, on cherche $P \in \mathbb{R}_5[X]$ tel que

$$\delta^2(P) = 7H_0 + 8H_1 + 10H_2 + 6H_3$$

Or, on a vu au cours de la question III.A.4 que $\delta^k(H_\ell) = H_{\ell-k}$ pour $0 \le k \le \ell \le n$. En particulier, $H_i = \delta^2(H_{i+2})$ pour tout $i \in [0, 3]$ d'où

$$7H_0 + 8H_1 + 10H_2 + 6H_3 = \delta^2(7H_2 + 8H_3 + 10H_4 + 6H_5)$$

Enfin, le polynôme $7H_2 + 8H_3 + 10H_4 + 6H_5$ appartient bien à $\mathbb{R}_5[X]$ car $\deg(H_i) = i$ pour tout $i \in [0; 5]$. Par conséquent,

Le polynôme
$$P=7H_2+8H_3+10H_4+6H_5\in\mathbb{R}_5[X]$$
 vérifie bien la relation $\delta^2(P)=X^3+2X^2+5X+7.$

[III.B.3] On sait que les solutions d'une telle équation s'obtiennent en ajoutant une solution particulière aux solutions de l'équation sans second membre.

- Soit E le sous-espace des suites $(u_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ telles que $u_{k+2}-2u_{k+1}+u_k=0$ pour tout $k\in\mathbb{N}$. Comme le polynôme $P=X^2-2X+1$ admet 1 pour racine double, l'espace E est engendré par les suites $(1)_{k\in\mathbb{N}}$ et $(k)_{k\in\mathbb{N}}$.
- Cherchons une solution de la forme $u_k = P(k)$ pour tout $k \in \mathbb{N}$, où $P \in \mathbb{R}[X]$. Le polynôme P doit alors vérifier

$$\begin{split} \mathbf{X}^3 + 2\mathbf{X}^2 + 5\mathbf{X} + 7 &= \mathbf{P}(\mathbf{X} + 2) - 2\mathbf{P}(\mathbf{X} + 1) + \mathbf{P}(\mathbf{X}) \\ &= [\mathbf{P}(\mathbf{X} + 2) - \mathbf{P}(\mathbf{X} + 1)] - [\mathbf{P}(\mathbf{X} + 1) - \mathbf{P}(\mathbf{X})] \\ &= \delta(\mathbf{P})(\mathbf{X} + 1) - \delta(\mathbf{P})(\mathbf{X}) \\ \mathbf{X}^3 + 2\mathbf{X}^2 + 5\mathbf{X} + 7 &= \delta^2(\mathbf{P})(\mathbf{X}) \end{split}$$

D'après la question III.B.2, le polynôme $P = 7H_2 + 8H_3 + 10H_4 + 6H_5$ convient.

• On en déduit ainsi que

Les suites réelles vérifiant la relation donnée sont les suites $(u_k)_{k\in\mathbb{N}}$ de terme général

$$ak + b + 7H_2(k) + 8H_3(k) + 10H_4(k) + 6H_5(k)$$

où a et b sont deux réels quelconques.

III.C.1 Par définition, le polynôme $H_n = \frac{1}{n!} \prod_{j=0}^{n-1} (X-j)$ admet $0, 1, \dots, n-1$ pour racines simples. Soit alors $k \in \mathbb{Z}$.

- Si $k \in [0; n-1]$, c'est une racine de H_n donc $H_n(k) = 0$.
- Si $k \ge n$, on obtient en effectuant le changement d'indice $\ell = k j$

$$H_n(k) = \frac{1}{n!} \prod_{j=0}^{n-1} (k-j) = \frac{1}{n!} \prod_{\ell=k+1-n}^{k} \ell = \frac{k!}{n!(k-n)!} = \binom{k}{n}$$

• Si k < 0, on pose $p = -k \in \mathbb{N}^*$ de sorte que

$$H_n(k) = \frac{1}{n!} \prod_{j=0}^{n-1} (-p-j)$$

$$= \frac{(-1)^n}{n!} \prod_{\ell=p}^{p+n-1} \ell$$
 en posant $\ell = p+j$

$$= \frac{(-1)^n (p+n-1)!}{n!(p-1)!}$$

$$= (-1)^n \binom{p+n-1}{n}$$

$$H_n(k) = (-1)^n \binom{n-k-1}{n}$$

Ceci montre que

$$\forall k \in \mathbb{Z} \qquad \mathbf{H}_n(k) = \begin{cases} 0 & \text{si } k \in \llbracket \, 0 \, ; n-1 \, \rrbracket \\ \binom{k}{n} & \text{si } k \geqslant n \\ (-1)^n \, \binom{n-k-1}{n} & \text{si } k < 0 \end{cases}$$

III.C.2 D'après le résultat de la question III.C.1, on a en particulier $H_n(k) \in \mathbb{Z}$ pour tout $k \in \mathbb{Z}$. En conséquence,

$$H_n(\mathbb{Z}) \subset \mathbb{Z}$$

On travaille depuis le début du sujet avec un entier $n \in \mathbb{N}^*$ fixé. En fait, le résultat de cette question est valable pour tout entier $n \in \mathbb{N}^*$, et même pour n = 0 puisque $H_0 = 1$. Cela va s'avérer indispensable par la suite.

III.C.3 Soit $P \in \mathbb{R}_n[X]$ tel que $P(\mathbb{Z}) \subset \mathbb{Z}$. Pour tout $k \in \mathbb{Z}$, on a donc $P(k) \in \mathbb{Z}$ et $P(k+1) \in \mathbb{Z}$, d'où $\delta(P)(k) = P(k+1) - P(k) \in \mathbb{Z}$. Ainsi,

Si $P \in \mathbb{R}_n[X]$ est à valeurs entières sur les entiers, $\delta(P)$ aussi.

III.C.4 Soit $P \in \mathbb{R}_n[X]$.

- Supposons que le polynôme P est à valeurs entières sur les entiers. D'après la question III.C.3, il en va de même pour $\delta(P)$ et, par une récurrence immédiate, pour $\delta^k(P)$ pour tout $k \in [0;n]$. En particulier, les nombres $\delta^k(P)(0)$, pour $k \in [0;n]$, sont tous des entiers. D'après la question III.A.5, ceci signifie que les coordonnés de P dans la base $(H_k)_{k \in [0;n]}$ sont entières.
- Réciproquement, supposons que les coordonnés du polynôme P dans cette base sont entières. Ce dernier s'écrit alors $P = \sum_{k=0}^{n} a_k H_k$, avec $a_k \in \mathbb{Z}$ pour tout $k \in [0; n]$. Soit maintenant $m \in \mathbb{Z}$. Le résultat de la question III.C.2 étant valable pour tout entier naturel n, $H_k(m) \in \mathbb{Z}$ pour tout $k \in [0; n-1]$ d'où

$$P(m) = \sum_{k=0}^{n} a_k H_k(m) \in \mathbb{Z}$$

Ainsi, P est à valeurs entières sur les entiers.

On a donc prouvé par double implication que

Un polynôme de $\mathbb{R}_n[X]$ est à valeurs entières sur les entiers si, et seulement si, ses coordonnés dans la base $(H_k)_{k \in [0:n]}$ sont entières.

III.C.5 Soit $P \in \mathbb{R}[X]$ de degré $d \in \mathbb{N}$ tel que P est à valeurs entières sur les entiers.

- Si d = 0, c'est un polynôme constant. De plus, cette constante est entière donc
 P = d! P est à coefficients entiers.
- Si $d \ge 1$, on peut utiliser le résultat de la question III.C.4 dans le cas n = d. De ce fait, les coordonnés du polynôme P dans la base $(H_k)_{k \in [0, d]}$ sont entières. Autrement dit, il existe des entiers a_0, \ldots, a_d tels que

$$\mathbf{P} = \sum_{k=0}^d a_k \mathbf{H}_k \quad \text{ d'où } \quad d! \, \mathbf{P} = d! \sum_{k=0}^d a_k \mathbf{H}_k = \sum_{k=0}^d \frac{d!}{k!} \, a_k \, k! \, \mathbf{H}_k$$

Soit $k \in [0; d]$. Par définition, $k! H_k \in \mathbb{Z}[X]$. De plus, k! divise d! donc d!/k! est un entier, comme a_k . En tant que somme d'éléments de $\mathbb{Z}[X]$, le polynôme d! P est donc à coefficients entiers.

Le polynôme $P=X^2/2$ montre que la réciproque est fausse. En effet, $2!\,P=X^2$ est coefficients entiers, mais $P(1)\notin\mathbb{Z}$. Par conséquent,

Pour tout $P \in \mathbb{R}[X]$ de degré $d \in \mathbb{N}$, si P est à valeurs entières sur les entiers, alors d!P est un polynôme à coefficients entiers, mais la réciproque est fausse.

IV. GÉNÉRALISATION DE L'OPÉRATEUR DE DIFFÉRENCE ET APPLICATION

IV.A.1 Comme f est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} , la fonction $\delta(f)$ aussi en tant que composée et différence de fonctions de classe \mathscr{C}^{∞} . Pour tout x > 0, on a de plus

$$\delta(f)(x) = f(x+1) - f(x)$$

d'où par dérivation

 $\frac{\delta(f)'(x) = f'(x+1) - f'(x) = \delta(f')(x)}{\delta(f) \in \mathscr{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R}) \quad \text{et} \quad \delta(f)' = \delta(f')}$

Ainsi

Autrement dit, l'opérateur de différence commute avec l'opérateur de dérivation sur l'espace $\mathscr{C}^{\infty}(\mathbb{R}_{+}^{*},\mathbb{R})$.

 $\overline{\mathbf{IV.A.2}}$ Puisque les endomorphismes τ et id de $\mathscr{C}^{\infty}(\mathbb{R}_{+}^{*},\mathbb{R})$ commutent, on a encore

$$\delta^k = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \tau^j$$

pour tout $k \in \mathbb{N}$, comme à la question I.B.4. On en déduit que pour tout x > 0,

$$\delta^k(f)(x) = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \tau^j(f)(x) = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} f(x+j)$$

soit

$$\forall x > 0 \quad \forall n \in \mathbb{N} \qquad \delta^n(f)(x) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(x+j)$$

IV.A.3 Soit x > 0. Comme la fonction f est de classe \mathscr{C}^{∞} sur \mathbb{R}_+^* , elle est dérivable sur l'intervalle [x; x+1]. On déduit du théorème des accroissements finis qu'il existe un réel $x_1 \in]x; x+1[$ tel que

$$\delta(f)(x) = f(x+1) - f(x) = (x+1-x)f'(x_1) = f'(x_1)$$

Si l'on pose $y_1 = x_1 - x$, on a alors $y_1 \in]0;1[$ et $x_1 = x + y_1$. Ainsi,

$$\forall x > 0 \quad \exists y_1 \in]0;1[\qquad \delta(f)(x) = f'(x + y_1)$$

Depuis le début de la quatrième partie, on travaille avec une fonction f fixée. Les résultats de cette question et des deux précédentes sont en fait valables pour toute fonction $f \in \mathscr{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R})$, ce qui va nous être utile par la suite.

IV.A.4 Soit x > 0 fixé. Considérons la propriété définie pour tout $n \in \mathbb{N}^*$ par

$$\mathscr{P}(n)$$
: $\forall f \in \mathscr{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R}) \; \exists y_{n} \in] \; 0 \; ; n \; [\quad \delta^{n}(f)(x) = f^{(n)}(x + y_{n}) \;$

- $\mathcal{P}(1)$ est vraie d'après la question IV.A.3.
- $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: supposons que la propriété \mathscr{P} est vraie au rang $n \in \mathbb{N}^*$. Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}_+^*, \mathbb{R})$. On a $\delta^{n+1}(f) = \delta^n(\delta(f))$. Comme $\delta(f) \in \mathscr{C}^{\infty}(\mathbb{R}_+^*, \mathbb{R})$ d'après la question IV.A.1, on déduit de la proposition $\mathscr{P}(n)$ qu'il existe un réel $y_n \in]0; n[$ tel que

$$\delta^{n+1}(f)(x) = \delta^n(\delta(f))(x) = \delta(f)^{(n)}(x+y_n)$$

D'après la question IV.A.1, on a $\delta(f)' = \delta(f')$ d'où, par récurrence immédiate, $\delta(f)^{(n)} = \delta(f^{(n)})$, si bien que

$$\delta^{n+1}(f)(x) = \delta(f)^{(n)}(x+y_n) = \delta(f^{(n)})(x+y_n)$$

Comme $f^{(n)} \in \mathscr{C}^{\infty}(\mathbb{R}_+^*, \mathbb{R})$ et $x + y_n > 0$, il existe d'après la question IV.A.3 un réel $y_1 \in]0;1[$ tel que

$$\delta(f^{(n)})(x+y_n) = (f^{(n)})'(x+y_n+y_1) = f^{(n+1)}(x+y_{n+1})$$

en posant $y_{n+1} = y_n + y_1 \in]0; n+1[$. Pour toute fonction $f \in \mathscr{C}^{\infty}(\mathbb{R}_+^*, \mathbb{R})$, il existe ainsi un réel $y_{n+1} \in]0; n+1[$ tel que $\delta^{n+1}(f)(x) = f^{(n+1)}(x+y_{n+1})$, ce qui montre que la proposition $\mathscr{P}(n+1)$ est vraie.

• <u>Conclusion</u>: d'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}^*$. Ceci étant vrai pour tout réel x > 0, on déduit de la question IV.A.2 que

$$\forall x > 0 \quad \forall n \in \mathbb{N}^* \quad \exists y_n \in] \ 0 \ ; n \ [\qquad \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(x+j) = f^{(n)}(x+y_n)$$

IV.B.1 Soit $k \in \mathbb{N}^*$. Sa décomposition en facteurs premiers s'écrit $k = \prod_{i=1}^r p_i^{m_i}$, avec $r \in \mathbb{N}^*$, p_1, \ldots, p_r des nombres premiers et m_1, \ldots, m_r des entiers. Alors

$$k^{\alpha} = \left(\prod_{i=1}^{r} p_{i}^{m_{i}}\right)^{\alpha} = \prod_{i=1}^{r} p_{i}^{\alpha m_{i}} = \prod_{i=1}^{r} \left(p_{i}^{\alpha}\right)^{m_{i}} > 0$$

Pour tout $i \in [1; r]$, l'entier p_i est premier donc $p_i^{\alpha} \in \mathbb{N}$ par hypothèse, si bien que $k \in \mathbb{N}$ par produit. De ce fait,

$$\forall k \in \mathbb{N}^* \qquad k^{\alpha} \in \mathbb{N}^*$$

IV.B.2 Comme 2 est premier, on déduit de la définition du réel α que 2^{α} est un entier, forcément non nul. Par conséquent, $2^{\alpha} \geqslant 1$ d'où $\alpha \ln 2 \geqslant 0$ soit

$$\alpha \geqslant 0$$

IV.B.3 Dans cette question, on considère la fonction $f_{\alpha} : x \longmapsto x^{\alpha}$.

- Si $\alpha \in \mathbb{N}$, la fonction f_{α} est polynomiale de degré α si bien que $f_{\alpha}^{(\alpha+1)} = 0$. En particulier, $f_{\alpha}^{(\alpha+1)}(1) = 0$.
- Si $\alpha \notin \mathbb{N}$, on a $f_{\alpha}^{(n)}(x) = \alpha(\alpha 1) \dots (\alpha + 1 n) x^{\alpha n} \neq 0$ pour tout x > 0 et pour tout $n \in \mathbb{N}$.

Ainsi,

 α est un entier naturel si, et seulement si, l'une des dérivées successives de f_{α} s'annule sur $]0;+\infty[$.

IV.C.1 Soit $j \in [0; n]$. Comme $x \in \mathbb{N}^*$, alors $x + j \in \mathbb{N}^*$ et l'on déduit de la question IV.B.1 que $f_{\alpha}(x + j) \in \mathbb{N}$. Les nombres $(-1)^{n-j}$ et $\binom{n}{j}$ étant des entiers, il en découle que

$$\forall n \in \mathbb{N}$$
 $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha}(x+j) \in \mathbb{Z}$

[IV.C.2] Soit x > 0. D'après les calculs effectués à la question IV.B.3,

$$f_{\alpha}^{(n)}(x) = \alpha(\alpha - 1) \dots (\alpha + 1 - n)x^{\alpha - n}$$

Comme $n=\lfloor\alpha\rfloor+1>\alpha$, alors $\alpha-n<0$ si bien que $\lim_{x\to+\infty}x^{\alpha-n}=0$ et donc $\lim_{x\to+\infty}f_{\alpha}^{(n)}(x)=0$ par produit de limites. En outre, $y_n>0$ d'où $x+y_n>x$ et $\lim_{x\to+\infty}x+y_n=+\infty$ d'après le théorème de minoration. On obtient par composition de limites

$$\lim_{x \to +\infty} f_{\alpha}^{(n)}(x + y_n) = 0$$

Il est quand même un peu abusif de parler de la limite de $f_{\alpha}^{(n)}(x+y_n)$ alors que y_n , qui dépend de x, n'est pas défini de manière unique a priori. Il aurait mieux valu mentionner le membre de gauche de l'égalité (IV.1).

IV.C.3 Posons $v_x = f_{\alpha}^{(n)}(x + y_n)$ pour tout $x \in \mathbb{N}^*$.

- D'après les résultats des questions IV.A.4 et IV.C.1, $v_x \in \mathbb{Z}$ pour tout $x \in \mathbb{N}^*$.
- D'après le résultat de la question IV.C.2, $\lim_{x\to +\infty} v_x = 0$.

Ainsi, $(v_x)_{x\in\mathbb{N}^*}$ est une suite convergente d'entiers. Il s'ensuit qu'elle est stationnaire et atteint sa limite. En particulier, il existe $N\in\mathbb{N}^*$ tel que $v_N=f_\alpha{}^{(n)}(N+y_n)=0$. Comme $N+y_n>0$, on déduit alors de la question IV.B.3 que

$$\alpha \in \mathbb{N}$$