École Polytechnique - ESPCI - PC

Algèbre

 $\forall (u,v) \in S^2, \{u,v\} \in A \iff \{f(u),f(v)\} \in A'.$

Donner une majoration du nombre de graphes à n sommets et k arêtes deux à deux non isomorphes.

412. \bigstar Soient $n \geqslant 2$ et $a_0, \dots, a_n \in \mathbb{R}$. Montrer qu'il existe un entier $i \in [0, n]$ tel que l'on ait $\left| \sum_{k=0}^i a_k - \sum_{k=i+1}^n a_k \right| \leqslant \sup_{0 \leqslant k \leqslant n} |a_k|$.

413. ** Soit $P = X^2 + c_1 X + c_0$ à coefficients dans \mathbb{N} . Déterminer les suites d'entiers naturels (a_n) telles que, pour tout $n \in \mathbb{N}$, $P(a_n) = a_{n+1} a_{n+2}$.

- **414.** Soit $k \in \mathbb{N}$. Déterminer les suites $(a_n)_{n \in \mathbb{N}}$ à valeurs dans \mathbb{N} pour lesquelles il existe un polynôme P à coefficients dans \mathbb{N} , unitaire et de degré k tel que $\forall n \in \mathbb{N}$, $P(a_n) = \prod_{j=1}^k a_{n+j}$.
- **415.** Soient A et B deux éléments de $\mathbb{R}[X]$ dont toute combinaison linéaire réelle est scindée ou nulle, x et y deux racines de A telles que x < y. Montrer que B a une racine dans [x, y].
- **416.** Calculer $\sum_{z \in \mathbb{U}_n} \frac{1}{2-z}$.
- **417.** Soit $n \in \mathbb{N}$ avec $n \ge 2$. Soient u_1, \ldots, u_n des nombres complexes de module 1. Montrer que $\prod_{i \ne j} |u_i u_j|^{\frac{1}{n(n-1)}} \le n^{\frac{1}{n}}$.
- **418.** Pour $n\in\mathbb{N}^*$, calculer le module de $\sum_{k=0}^{n-1}\exp\Big(2i\pi\frac{k^2}{n}\Big)$.
- **419.** Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} . Soit $a \in \mathbb{R}$. Montrer que le polynôme $\operatorname{Re}(P(X+ia))$, polynôme dont les coefficients sont les parties réelles du polynôme P(X+ia), est scindé sur \mathbb{R} .
- **420.** On note $\mathbb{D}=\{z\in\mathbb{C}\;;\;|z|\leqslant1\}$ et $\|P\|=\sup_{z\in\mathbb{D}}|P(z)|$ pour $P\in\mathbb{C}[X]$. Pour $P\in\mathbb{C}[X]$, on définit la suite $(P_n)_{n\geqslant0}$ en posant $P_0=P$ puis $P_{n+1}=(P'_n)^2$ pour tout $n\in\mathbb{N}$. Montrer qu'il existe un réel $\varepsilon>0$ tel que, si $\|P\|<\varepsilon$, alors $\lim_{n\to+\infty}\|P_n\|=0$.
- **421.** Soit F un polynôme non constant à coefficients dans \mathbb{Z} . Montrer qu'il existe une infinité d'entiers $n \in \mathbb{Z}$ tels que F(n) ne soit pas premier.
- **422.** Montrer que \mathbb{R}^n ne s'écrit pas comme réunion finie de sous-espaces vectoriels stricts.
- **423.** Montrer que, pour tout $n \in \mathbb{N}^*$, il existe une matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que, pour n'importe quelle permutation de ses n^2 coefficients, on obtienne toujours une matrice inversible.
- **424.** Soient E et F deux \mathbb{C} -espaces vectoriels. Une application $f: E \mapsto F$ est dite antilinéaire si $\forall x,y \in E, \forall \lambda \in \mathbb{C}, f(x+\lambda y) = f(x) + \overline{\lambda}f(y)$ Pour quels entiers n existe-t-il $f: \mathbb{C}^n \mapsto \mathbb{C}^n$ antilinéaire telle que $f \circ f = -\operatorname{id}$?
- **425.** Soient $n\geqslant 2$ et $A=\begin{pmatrix}0&1&\cdots&1\\1&0&\ddots&\vdots\\\vdots&\ddots&\ddots&1\\1&\cdots&1&0\end{pmatrix}$. Montrer que $A\in\mathrm{GL}_n(\mathbb{R})$. Trouver les valeurs propres de A et leurs multiplicités.

- **426.** Soient $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(b_1,\ldots,b_n)\in\mathbb{R}^n$ et $A=(a_i+\delta_{i,j}b_j)_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$.
- a) Calculer det(A).
- b) La matrice A est-elle diagonalisable?
- **427.** Soient A et $B \in \mathcal{M}_n(\mathbb{C})$. Montrer que les assertions suivantes sont équivalentes;
- (i) A et B admettent au moins une valeur propre commune,
- (ii) il existe $P \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que PA = BP.
- **428.** Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $A^2 = B^2 = -I_n$. Montrer que A et B sont semblables.
- **429.** Soit n un entier naturel impair. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB + BA = A. Montrer que A et B ont un vecteur propre commun. Le résultat persiste-t-il pour n pair?
- **430.** Soient A et B des matrices de $\mathcal{M}_n(\mathbb{R})$ telles que AB est diagonalisable.
- a) Est-ce que que BA est diagonalisable?
- b) Montrer que:
- $\dim (\operatorname{Ker} (AB)) \leq \dim (\operatorname{Ker} (B(AB)A)) \leq \dim (\operatorname{Ker} (A(BABA)B)) \leq \dim (\operatorname{Ker} (AB)).$
- c) Est-ce que que $(BA)^2$ est diagonalisable?
- **431.** Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. On suppose que les valeurs propres complexes de A ont une partie réelle strictement négative et que celles de B ont une partie réelle négative. Soit $C \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une unique matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que C = AM + MB.
- **432.** Dans $\mathcal{M}_n(\mathbb{C})$, soient S et S' diagonalisables, N et N' nilpotentes. On suppose NS = SN et N'S' = S'N' et S + N = S' + N'. Montrer que S = S' et N = N'.
- **433.** Montrer que, pour toute matrice $A \in \mathcal{S}_n(\mathbb{R})$, il existe un unique couple (B,C) de matrices symétriques positives telles que A = B C et BC = CB = 0.
- **434.** a) Montrer que toute matrice réelle de taille n symétrique positive admet une racine carrée symétrique positive.
- **b**) Soient S et A deux matrices de taille n avec S symétrique définie positive et A antisymétrique. Montrer que AS est \mathbb{C} -diagonalisable.
- **435.** Soient $A \in \mathcal{S}_n(\mathbb{R})$ et $k \in \mathbb{N}^*$. Pour $H \in \mathcal{S}_n(\mathbb{R})$, on pose $\varphi_k(H) = \sum_{i=0}^{k-1} A^i H A^{k-1-i}$.
- a) Montrer que φ_k est un endomorphisme de $\mathcal{S}_n(\mathbb{R})$.
- b) À quelle condition φ_k est-elle injective? surjective? bijective?
- **436.** * Soit $f \in \mathcal{L}(S_n(\mathbb{R}), \mathbb{R})$ telle que $\forall M \in \mathcal{S}_n^+(\mathbb{R}), f(M) \geq 0$. Montrer que f est une combinaison linéaire des formes linéaires $\varphi_X : M \mapsto X^T M X$ avec $X \in \mathcal{M}_{n,1}(\mathbb{R})$.
- **437.** Soit n un entier naturel impair. Soient A et B dans $S_n(\mathbb{R})$. On note C(A) (resp. C(B)) l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ qui commutent avec A (resp. B).

Montrer que $C(A) \cap C(B) = \mathbb{R}I_n$ si et seulement s'il n'existe pas deux sous-espaces F et G de \mathbb{R}^n , stables par A et B, de dimension ≥ 1 , tels que $F \oplus G = \mathbb{R}^n$.

438. Soient $A, B \in \mathcal{S}_n(\mathbb{R})$ deux matrices dont les valeurs propres sont strictement supérieures à 1. Montrer que les valeurs propres de AB sont strictement supérieures à 1.

Analyse

- **439.** * On note E l'ensemble des polynômes non nuls à coefficients dans $\{-1,0,1\}$ et A l'ensemble des racines des polynômes appartenant à E. Déterminer l'adhérence de A.
- **440.** \star Chercher les fonctions $f: \mathbb{R}^2 \to \mathbb{R}^2$ bijective, continue, dont la réciproque est continue et telle que, pour toute droite \mathcal{D} , $f(\mathcal{D})$ est une droite.
- **441.** Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ et $n \in \mathbb{N}$. Montrer qu'il existe un unique $P_0 \in \mathbb{R}_n[X]$ tel que $\|f-P_0\|_{\infty} = \min\{\|f-P\|_{\infty}, P \in \mathbb{R}_n[X]\}$.
- **442.** Soient $n \in \mathbb{N}$, a < b deux réels, I = [a, b] et $x_0 < x_1 < \cdots < x_n$ dans I. On note P_j l'unique polynôme de degré inférieur ou égal à n qui vaut 1 en x_j et 0 en chaque x_i pour

$$i \neq j$$
. Pour $f \in \mathcal{C}^0(I, \mathbb{R})$ et $t \in I$, on note $L(f)(t) = \sum_{j=0}^n f(x_j) P_j(t)$ et $\varphi(t) = \sum_{j=0}^n |P_j(t)|$.

Montrer que $||L(f)||_{\infty} \le ||\varphi||_{\infty} \cdot ||f||_{\infty}$ et étudier le cas d'égalité.

- **443.** Soit $f: \mathbb{R}^n \to \mathbb{R}$ convexe, c'est-à-dire telle que, pour tout $(u, v) \in \mathbb{R}^n$, $t \mapsto f(u + vt)$ est convexe. Montrer que f est continue.
- **444.** Soit E une partie fermée bornée de \mathbb{R}^n telle que $B(0,1) \subset E$. Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M(E) \subset E$. Montrer que $|\det(M)| \leq 1$.
- **445.** Soit $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ une fonction continue. Soient $t_0 \in \mathbb{R}$ et $p = \operatorname{rg}(A(t_0))$. Montrer qu'il existe $\varepsilon > 0$ tel que, pour tout $t \in [t_0 \varepsilon; t_0 + \varepsilon]$, on ait $\operatorname{rg}(A(t)) \ge p$.

446. ** On note
$$a=\sqrt{2}$$
. Pour $n\in\mathbb{N}^*$, soit $S_n=\frac{1}{n}\sum_{\substack{k\in\mathbb{N}\\a<\frac{k}{n}< a+1}}\frac{1}{\sqrt{\frac{k}{n}-a}}$. Étudier la conver-

gence de la suite (S_n) .

- **447.** Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = x^n + x^{1/n}$. Soit $a \in \mathbb{R}^{+*}$. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe un unique x_n tel que $f_n(x_n) = a$. Étudier la limite de (x_n) en fonction de a.
- **448.** Étudier la nature de $\sum u_n$ où $u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n}$, avec $\alpha \in \mathbb{R}$.

- **449.** Soit (a_n) une suite de réels de]0,1[telle que la série $\sum \frac{a_n}{\ln(1/a_n)}$ converge. Montrer que la série $\sum \frac{a_n}{\ln(n)}$ converge.
- **450.** Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe vérifiant, pour $n\in\mathbb{N}$, $a_{n+1}=a_n+\frac{1}{(n+1)^2}\sum_{k=0}^n a_k$.
- a) Trouver α tel qu'il existe C vérifiant $\forall n \in \mathbb{N}^*, |a_n| \leqslant Cn^{\alpha}$
- b) On suppose $a_0 > 0$. Montrer que $\sum a_n$ diverge.
- **451.** Prouver que la série de terme général 2^{-2^n} converge et que sa somme $\sum_{n=0}^{+\infty} 2^{-2^n}$ est irrationnelle.
- **452.** Soit (a_n) une suite de réels strictement positifs telle que $\sum a_n$ converge. Soit (u_n) une suite réelle. On pose, pour $n \in \mathbb{N}$, $v_n = \frac{\sum_{k=0}^n a_k u_{n-k}}{\sum_{k=0}^n a_k}$.
- a) Montrer que, si $\sum u_n$ converge absolument, alors $\sum v_n$ converge.
- b) Est-ce toujours le cas si $\sum u_n$ ne converge pas absolument?
- **453.** Soit $f \in [0; +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que } \int_0^{+\infty} |f'(t)| \, \mathrm{d}t \text{ converge. Montrer que } \int_0^{+\infty} f(t) \, \mathrm{d}t \text{ converge si et seulement si } \sum f(n) \text{ converge.}$
- **454.** Soient $k \in \mathbb{N}^*$ et $x_1, \dots, x_k \in \mathbb{R}^{+*}$. Montrer l'inégalité $\prod_{i=1}^k (1+x_i^k) \geqslant \left(1+\prod_{i=1}^k x_i\right)^k$.
- **455.** Déterminer les fonctions continues $f:\mathbb{R} \to \mathbb{R}$ telles que :

$$\forall (a,b) \in \mathbb{R}^2, a < b, f\left(\frac{a+b}{2}\right) = \frac{1}{b-a} \int_a^b f(t) dt.$$

- **456.** Soient $n \in \mathbb{N}$ et $\lambda \in]0,1[$ distinct de $\frac{1}{n+2}.$
- a) Trouver toutes les fonctions f de classe C^{n+1} telles que, pour tous réels a et b, on ait $f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(\lambda b + (1-\lambda a)).$
- **b**) Étudier le cas $\lambda = \frac{1}{n+2}$.

- **457.** Soient a_1, \ldots, a_n des réels et $P: x \mapsto \sum_{k=1}^n a_k \sin(kx)$. Pour tout entier $r \in \mathbb{N}$, on suppose que $(-1)^r P^{(2r)}$ est positive sur $[0; \pi]$. Montrer que P est la fonction $x \mapsto a_1 \sin(x)$.
- **458.** Soit $(u_{k,n})_{(k,n)\in\mathbb{N}\times\mathbb{N}}$ une suite doublement indexée à valeurs complexes. On suppose que, pour toute suite complexe $(v_n)_{n\in\mathbb{N}}$ bornée, $\lim_{k\to+\infty}\sum_{n=0}^{+\infty}v_nu_{k,n}=0$.

Montrer que $\lim_{k\to +\infty}\sum_{n=0}^{+\infty}|u_{k,n}|=0.$

- **459.** ** Soit $f \in \mathcal{C}^0([0; 2\pi], \mathbb{R})$ telle que $f(0) = f(2\pi)$. Soit $n \in \mathbb{N}$. On suppose que, pour tout $k \in [0; n]$, on a $\int_0^{2\pi} f(t) \sin(kt) dt = \int_0^{2\pi} f(t) \cos(kt) dt = 0$. Quel est le nombre minimal d'annulations de f?
- **460.** * * Soient $f, g \in C^0([0;1], \mathbb{R})$ telles que $\int_0^1 fg = 0$.
- a) Montrer que $\int_0^1 f^2 \left(\int_0^1 g \right)^2 + \int_0^1 g^2 \left(\int_0^1 f \right)^2 \geqslant 4 \left(\int_0^1 f \int_0^1 g \right)^2$.
- **b)** Montrer que $\int_0^1 f^2 \int_0^1 g^2 \ge 4 \left(\int_0^1 f \int_0^1 g \right)^2$.
- **461.** Soit $f \in \mathcal{C}^2(\mathbb{R}^+,\mathbb{R})$ telle que f^2 et $(f'')^2$ sont intégrables sur \mathbb{R}^+ et f(0)f'(0) = 0. Lorsque cela a un sens, on pose $\|g\| = \sqrt{\int_0^{+\infty} g^2(t) \, \mathrm{d}t}$. Montrer que $(f')^2$ est intégrable et $\|f'\|^2 \leqslant \|f\| \cdot \|f''\|$.
- **462.** Soit $f \in \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}^+)$ telle que $\int_0^{+\infty} f^2(t) \, \mathrm{d}t$ converge. On pose $g: x \mapsto \int_0^x f(t) \, \mathrm{d}t$. Montrer que $\int_0^{+\infty} \frac{g^2(x)}{x^2} \, \mathrm{d}x$ converge.
- **463.** a) Pour $p \in \mathbb{R}$, calculer $\sup \left\{ xp \frac{x^2}{2} \; ; \; x \in \mathbb{Q} \right\}$.
- **b**) Soit F un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ contenant les fonctions constantes et tel que :
- pour toutes $f, g \in F$, la fonction $x \mapsto \max(f(x), g(x))$ est dans F;
- pour toute suite $(f_n)_{n\geqslant 0}$ de fonctions de F qui tend simplement vers une fonction f, la fonction f appartient à F.

Montrer que, si $f, g \in F$, alors $fg \in F$.

- 84
- **464.** Pour $f:[0,1]\to\mathbb{R}$ et $n\in\mathbb{N}^*$, on pose $P_n:x\mapsto\sum_{k=0}^n\binom{n}{k}f\Bigl(\frac{k}{n}\Bigr)\,x^k(1-x)^{n-k}$. On

admet que, si f est continue, alors (P_n) tend uniformément vers f sur [0, 1].

Déterminer une condition nécessaire et suffisante sur $f:[0,1] \to \mathbb{R}$ afin qu'il existe une suite de polynômes à coefficients entiers qui converge uniformément vers f.

465. Soit
$$f: z \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^5 \left(1 + \frac{i}{n^3} - z\right)}$$
.

- a) Montrer que f est développable en série entière au voisinage de 0.
- **b**) Montrer que la restriction de f à l'ensemble des nombres complexes de module 1 n'est pas continue.
- **466.** Soit S l'ensemble des $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telles que, pour tout $x \in \mathbb{R}$, f(x) = xf'(x/2).
- a) Chercher les $f \in \mathcal{S}$ développables en série entière.
- b) L'espace S est-il de dimension finie?
- **467.** Soit $(u_n)_{n\geqslant 0}\in\mathbb{C}^{\mathbb{N}}$ une suite qui tend vers 0. Pour $t\in]-1,1[$, on pose $f(t)=\sum_{n=0}^{+\infty}u_nt^n.$
- a) Vérifier que f est bien définie sur]-1;1[.
- **b)** Montrer que $\lim_{t\to 1^-} tf(t) = 0$.
- c) On suppose de plus qu'il existe des réels a_1,\ldots,a_r et $0<\theta_1<\cdots<\theta_r<\pi$ tels que $\forall n\in\mathbb{N},\,u_n=\sum_{k=1}^ra_k\cos(n\theta_k).$ Montrer que $a_k=0$ pour tout $k\in[\![1,r]\!].$
- **468.** ** La fonction $f: x \mapsto \sum_{k=0}^{+\infty} (-1)^k x^{k!}$ admet-elle une limite lorsque x tend vers 1^- ?
- **469.** Soit $(a_{k,n})_{(k,n)\in\mathbb{N}^2}$ une famille de nombres complexes telle que, pour tout $n\in\mathbb{N}$, la série entière $f_n:z\mapsto\sum_{k=0}^{+\infty}a_{k,n}z^k$ a un rayon de convergence supérieur ou égal à 1. On note

B l'ensemble des nombres complexes de module $\leqslant 1$. On suppose que la suite (f_n) converge simplement sur B et qu'il existe $M \in \mathbb{R}^+$ tel que, pour tous $n \in \mathbb{N}$ et $z \in B$, $|f_n(z)| \leqslant M$. Montrer que la suite (f_n) converge uniformément sur $\{z \in \mathbb{C}, |z| \leqslant r\}$ pour tout r < 1.

- **470.** Soient U un voisinage de 0 dans \mathbb{C} , $k \in \mathbb{N}$ et f une fonction de U dans \mathbb{C} développable en série entière au voisinage de 0 telle que $f(z) = O(z^k)$. Montrer que, pour r > 0 assez petit, il existe au moins 2k nombres complexes z de module r tels que $f(z) \in \mathbb{R}$.
- **471.** ** Pour $x \ge 0$, on pose $I(x) = \int_0^{\pi/2} \cos(x \cos \theta) d\theta$.
- a) Écrire I(x) sous la forme d'une série.
- b) Montrer que $I(x) = \mathcal{O}(x^{-1/4})$ quand x tend vers $+\infty$.

- **472.** On admet le théorème d'approximation de Weierstrass. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Soient a,b>0. On suppose que f(x)=0 pour tout $x\in \mathbb{R}\setminus [-a\,;a\,]$. Pour $x\in \mathbb{R}$, on pose $\hat{f}(x)=\int_{-\infty}^{+\infty}f(t)e^{-ixt}\,\mathrm{d}t$.
- a) On suppose que $\hat{f}(x) = 0$ pour tout $x \in [-b; b]$. Montrer que f = 0.
- **b)** On suppose que $\hat{f}(x) = 0$ pour tout $x \in \mathbb{R} \setminus [-b; b]$. Montrer que f = 0.
- **473.** Déterminer les solutions sur \mathbb{R} de l'équation différentielle : xy'' + y' 4xy = 0. *Ind.* Chercher les solutions développables en série entière.
- **474.** Soient $p: \mathbb{R} \to \mathbb{R}$ intégrable et $y: \mathbb{R} \to \mathbb{R}$ de classe C^2 vérifiant (E): y'' py = 0.
- a) Montrer que $\lim_{x \to +\infty} y'(x) = 0$.
- **b)** On admet que, pour tout $(a,b) \in \mathbb{R}^2$, il existe y vérifiant (E) et (y(0),y'(0))=(a,b). Montrer que (E) admet une solution non bornée.
- **475.** Soit $X: \mathbb{R} \mapsto \mathbb{R}^{2n}$ de classe \mathcal{C}^1 telle que X'(t) = JSX(t), où $J = \begin{pmatrix} O_n & -I_n \\ I_n & O_n \end{pmatrix}$ et $S \in S_n^{++}(\mathbb{R})$. Montrer que X est bornée sur \mathbb{R} .
- **476.** Déterminer les extrema globaux et locaux de $f: M \in SO_4(\mathbb{R}) \mapsto tr(A)$.
- **477.** Soient $d \in \mathbb{N}$ et $\Omega \in \mathcal{C}^2(\mathbb{R}^d, \mathbb{R})$. On suppose que $\nabla(\Omega)(0) = 0$ et on note $D_a^2(\Omega)$ la hessienne en a de Ω . On suppose que $\mathrm{Im}(D_a^2(\Omega)) = F$, où F est indépendant de a et de rang p.

Montrer qu'il existe un changement de coordonnées f (c'est-à-dire une application de \mathbb{R}^d dans \mathbb{R}^d) tel que, pour tout $(x_1,\ldots,x_d)\in\mathbb{R}^d$, $(\Omega\circ f)(x_1,\ldots,x_d)$ ne dépende que de (x_1,\ldots,x_p) .

478. Soient $N \in \mathbb{N}^*$ et $f \in \mathcal{C}^0(\mathbb{R}^N, \mathbb{R})$. Montrer qu'il existe une suite (f_n) de fonctions dans $\mathcal{C}^\infty(\mathbb{R}^N, \mathbb{R})$ et une suite (x_n) d'éléments de \mathbb{R}^N qui tend vers 0 telles que, pour tout $n \in \mathbb{N}$, la fonction $f - \varphi_n$ admette un minimum local en x_n .

Probabilités

- **479.** On lance une pièce une infinité de fois. On note S_n le nombre de successions de deux pile consécutifs dans les n premiers lancers.
- a) Trouver $\mathbf{E}(S_n)$ et $\mathbf{V}(S_n)$.
- **b**) On pose $T = \min\{n \in \mathbb{N}, \ S_n = 1\}$. Calculer $G_T(t)$ et en déduire sa loi.
- **480.** ** Soit $f:[0;1] \to \mathbb{R}$ une fonction croissante. Pour $n \in \mathbb{N}^*$, montrer que la fonction $p_n: x \mapsto \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$ est croissante sur [0,1]. Interpréter d'un point de vue probabiliste.

- **481.** $\star\star$ On étudie un groupe de cellules. À l'instant initial, n=0, il y en a une. À chaque instant, chaque cellule peut de façon équiprobable : mourir, rester telle qu'elle est, se diviser en 2, se diviser en 3. Calculer la probabilité que le groupe disparaisse.
- **482.** ** Soient $p \in]0,1[$, $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires définie par $X_0=0$ et, pour $n \in \mathbb{N}$, $X_{n+1}=X_n+1$ avec une probabilité p et $X_{n+1}=0$ avec probabilité 1-p. Déterminer la loi de X_n , son espérance et sa variance.
- **483.** Soit Ω un ensemble. On dit que $\mathcal{M} \subset \mathcal{P}(\Omega)$ est une classe monotone si elle vérifie :
- (i) $\Omega \in \mathcal{M}$, (ii) \mathcal{M} est stable par union croissante,
- (iii) si $A, B \in \mathcal{M}$ et $B \subset A$, alors $A \setminus B \in \mathcal{M}$.
- a) Montrer qu'une intersection de classes monotones est une classe monotone.
- b) Montrer qu'une classe monotone stable par intersection finie est une tribu.
- c) Soit $C \subset \mathcal{P}(\Omega)$ stable par intersection finie. Montrer que la classe monotone D engendrée par C (c'est-à-dire la plus petite classe monotone contenant C) est une tribu.