Dans tout le chapitre, la notation |x| pour un scalaire x désigne sa valeur absolue si x est un réel et son module s'il s'agit d'un complexe.

1 Normes

1.1 Définitions

(Définition 1)

Soit E un \mathbb{K} -espace vectoriel. Une application $N: E \longmapsto \mathbb{R}_+$ est une norme sur E si elle vérifie les trois propriétés suivantes :

(1)
$$\forall x \in E, \qquad N(x) = 0 \implies x = 0$$
 (séparation)

(2)
$$\forall x \in E, \quad \forall \lambda \in \mathbb{K}, \qquad N(\lambda \cdot x) = |\lambda| \cdot N(x) \qquad \text{(positive homogénéité)}$$

$$\forall x,y \in E, \qquad N(x+y) \leq N(x) + N(y) \qquad \qquad \text{(inégalité triangulaire)}$$

Remarque 1

Cette définition entraı̂ne de surcroı̂t les propriétés suivantes :

- N(0) = 0 et N(x) = N(-x) pour tout vecteur x.
- $\forall x, y \in E$, $N(x y) \ge |N(x) N(y)|$

En général, une norme sur un espace vectoriel sera noté $||\cdot||$ plutôt que N.

(Définition 2)

Un espace vectoriel normé est un couple (E, N) où E est un espace vectoriel et N une norme sur E. On appelle alors distance sur E associée à N l'application

$$d: \quad E^2 \longrightarrow \mathbb{R}_+ \\ (x,y) \longmapsto N(x-y)$$

\mathbb{R} Remarque 2

Cette application vérifie les trois propriétés suivantes :

(1)
$$\forall x, y \in E, \quad d(x, y) = 0 \implies x = y$$
 (séparation)

(2)
$$\forall x, y \in E, \qquad d(x, y) = d(y, x)$$
 (symétrie)

$$\forall x,y,z\in E, \qquad d(x,z)\leq d(x,y)+d(y,z) \qquad \qquad (\text{in\'egalit\'e triangulaire})$$

Remarque 3

On définit plus généralement la notion de distance par les propriétés (1), (2) et (3) sur un ensemble quelconque X. Le couple (X, d) est alors appelé un espace métrique.

A titre d'exemple, si p est un nombre premier, l'application suivante définit une distance sur $\mathbb Z$ appelé distance p-adique :

$$d_P: \ \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{R}_+$$

$$(a,b) \longmapsto \begin{cases} 0 & \text{si } a = b \\ 2^{-k} & \text{où } k = \max\{r \in \mathbb{N}, \ p^r | (a-b)\} \text{ sinon} \end{cases}$$

Elle est de plus ultra-métrique.

Attention !!!! Pour vérifier que (E, N) est un espace vectoriel, il ne faut pas oublier de rappeler

- pourquoi E est un espace vectoriel (lorsque que ce n'est pas trivial).
- pourquoi N est bien définie (notamment si elle fait intervenir la somme d'une série, une borne supérieure par exemple).

Exemples usuels d'espaces vectoriels normés

Soit A une partie non vide de \mathbb{R} et $k \in \mathbb{R}_+$. On note $kA = \{k \cdot x, x \in A\}$. Alors,

$$\sup(kA) = k \sup A$$

où sup désigne la borne supérieure de l'ensemble qui appartient à $\mathbb{R} \cup \{+\infty\}$.

Proposition 1 (Normes sur \mathbb{K}^n)

Sur \mathbb{K}^n , les trois applications suivantes sont des normes sur \mathbb{R}_+ :

$$\begin{aligned} ||\cdot||_1: & \mathbb{K}^n \longrightarrow \mathbb{R}_+ & ||\cdot||_2: & \mathbb{K}^n \longrightarrow \mathbb{R}_+ \\ & (x_1, \dots, x_n) \longmapsto \sum_{i=1}^n |x_i| & (x_1, \dots, x_n) \longmapsto \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \\ & ||\cdot||_{\infty}: & \mathbb{K}^n \longrightarrow \mathbb{R}_+ \\ & (x_1, \dots, x_n) \longmapsto \sup_{i \in [\![1; n]\!]} |x_i| \end{aligned}$$

On les appelle respectivement norme 1, norme 2 et norme infinie.

Remarque 5

Plus généralement, ces trois normes peuvent être définies sur n'importe quel espace vectoriel de dimension finie, à partir des coordonnées des vecteurs dans une base arbitrairement choisie.

Attention, la norme d'un vecteur dépend alors bien entendu du choix de la base.

Proposition 2 (Normes sur des espaces de fonctions)

Sur le \mathbb{K} -espace vectoriel $\mathcal{C}^0([a;b],\mathbb{K})$, on peut définir trois normes par

$$\begin{split} ||\cdot||_1: \ E &\longrightarrow \mathbb{R}_+ \\ f &\longmapsto \int_a^b |f(t)| \ \mathrm{d}t \\ ||\cdot||_\infty: \ E &\longrightarrow \mathbb{R}_+ \\ ||\cdot||_\infty: \ E &\longrightarrow \mathbb{R}_+ \\ f &\longmapsto \sup_{t \in [a,b]} |f(t)| \end{split}$$

Ces trois normes sont appelées respectivement norme de la convergence en moyenne, de la convergence quadratique et enfin de la convergence uniforme.

Remarque 6

Les deux premières notions se généralisent lorsque I est un intervalle quelconque pour les espaces $\mathcal{L}^1(I)$ des fonctions intégrables sur I et $\mathcal{L}^2(I)$ des fonctions de carrés intégrables sur I. La norme infinie peut être définie sur n'importe quel espace de fonctions bornées.

Il n'est toutefois pas trivial de montrer que $\mathcal{L}^2(I)$ est stable par addition et cette justification doit être faite systématiquement.

Proposition 3 (Normes sur les polynômes)

Les applications suivantes sont des normes sur l'espace des polynômes à coefficients dans \mathbb{K} :

• En notant $P = \sum_{k=0}^{\infty} a_k X^k$, la suite $(a_n)_{n \in \mathbb{N}}$ étant nulle a.p.c.r,

$$\begin{split} ||\cdot||_1: \ \mathbb{K}[X] &\longrightarrow \mathbb{R}_+ \\ P &\longmapsto \sum_{k=0}^{\infty} |a_k| \\ ||\cdot||_{\infty}: \ \mathbb{K}[X] &\longrightarrow \mathbb{R}_+ \\ ||\cdot||_{\infty}: \ \mathbb{K}[X] &\longrightarrow \mathbb{R}_+ \\ P &\longmapsto \sup_{k \in \mathbb{N}} |a_k| \end{split}$$

• Pour tous réels a < b, en considérant l'application polynomiale associée à P,

$$\begin{split} ||\cdot||_{1,[a;b]}: & \ \mathbb{K}[X] \longrightarrow \mathbb{R}_+ \\ & f \longmapsto \int_a^b |P(t)| \ \mathrm{d}t \\ & ||\cdot||_{2,[a;b]}: \ \mathbb{K}[X] \longrightarrow \mathbb{R}_+ \\ & ||\cdot||_{\infty,[a;b]}: \ \mathbb{K}[X] \longrightarrow \mathbb{R}_+ \\ & ||\cdot||_{\infty,[a;b]}: \ \mathbb{K}[X] \longrightarrow \mathbb{R}_+ \\ & f \longmapsto \sup_{t \in [a;b]} |P(t)| \end{split}$$

Exercice 1 (Normes matricielles subordonnées)

Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, on note

$$||A|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

Démontrer qu'on définit ainsi une norme sur $\mathcal{M}_n(\mathbb{K})$ et que cette dernière vérifie

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \qquad ||AB|| \le ||A|| \cdot ||B||$$

Justifier enfin que

$$||A|| = \sup\{||AX||_{\infty}, X \in \mathbb{K}^n, ||X||_{\infty} \le 1\}$$

Remarque 7

Soit $||\cdot||$ une norme sur \mathbb{K}^n . Pour tout élément A de $\mathcal{M}_n(\mathbb{K})$, les trois bornes supérieures suivantes sont bien définies et on a les égalités

$$\sup_{X \in \mathbb{K}^n \backslash \{0\}} \frac{||AX||}{||X||} = \sup_{X \in \mathbb{K}^n, ||X|| \leq 1} ||AX|| = \sup_{X \in \mathbb{K}^n, ||X|| = 1} ||AX||$$

On note |||A||| cette quantité. Alors l'application $A \mapsto |||A|||$ définit une norme sur $\mathcal{M}_n(\mathbb{K})$ qui vérifie la propriété

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \qquad |||A \cdot B||| \le |||A||| \cdot |||B|||$$

On l'appelle la norme matricielle subordonnée à la norme $||\cdot||$ sur \mathbb{K}^n .

- pour la norme $||\cdot||_{\infty}$, on obtient la norme $||A|| = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{i,j}|$;
- pour la norme $||\cdot||_1$, on obtient la norme $||A|| = \max_{1 \le j \le n} \sum_{i=1}^n |a_{i,j}|$;
- enfin, pour la norme $||\cdot||_2$, on obtient le rayon spectral défini par $\rho(A) = (\sup \operatorname{Sp}({}^tAA))^{1/2}$.

1.3 Boules, parties bornées, convexité

(Définition 3)

Soit x un élément de E et r > 0. On appelle

ullet boule ouvert de centre x et de rayon r l'ensemble

$$B_{x,r} = \{ y \in E, \ ||x - y|| < r \}$$

 $\bullet\,$ boule fermée de centre x et de rayon r l'ensemble

$$\overline{B}_{x,r} = \{ y \in E, \ ||x - y|| \le r \}$$

ullet sphère de centre x et de rayon r l'ensemble

$$S_{x,r} = \{ y \in E, \ ||x - y|| = r \}$$

On appelle boule unité de E la boule fermée de centre 0 et de rayon 1.

Remarque 8

Contrairement à ce qu'indique son nom, une boule unité n'est pas forcément un ensemble tout rond ! Sur \mathbb{R}^2 muni de la norme infinie, il s'agit du carré de sommets (1,1),(-1,1),(-1,-1) et (1,-1).

Proposition 4

Soient a et b deux éléments de E. Il existe r > 0 tel que les boules $B_{a,r}$ et $B_{b,r}$ soient disjointes.

$\{$ Définition $4\}$

Une partie A de E est dite convexe si pour tous éléments x et y dans A et tout réel $t \in [0;1]$, le vecteur tx + (1-t)y appartient également à A.

Proposition 5

Une boule, qu'elle soit ouverte ou fermée, est une partie convexe de E.

Définition 5

Une partie A de E est dite bornée s'il existe $M \in \mathbb{R}_+$ tel que $A \subset B_{0,M}$ c'est-à-dire

$$\forall x \in A, \qquad ||x|| \le M$$

Une suite $(u_n)_{n\in\mathbb{N}}$ (resp. une application $f:X\longrightarrow E$) est dite bornée si $\{u_n,\ n\in\mathbb{N}\}$ (resp. f(X)) est une partie bornée de E.

Remarque 9

- Une boule (ouverte ou fermée) ou une sphère est une partie bornée.
- Une réunion finie ou une somme finie de parties bornées est une partie bornée de E.

Proposition 6

Soit X un ensemble quelconque. L'ensemble B(X,E) des applications bornées de X dans E est un espace vectoriel normé quand on le munit de la norme infinie :

$$||f||_{\infty} = \sup_{x \in X} ||f(x)||$$

2 Suites d'éléments d'un espace vectoriel normé

Définition 6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé E. On dit que u converge vers $\ell\in E$ si $(||u_n-\ell||)_{n\in\mathbb{N}}$ est une suite de limite nulle.

Une suite est dite convergente si elle admet une limite, elle est dite divergente sinon.

Proposition 7

- Sous réserve d'existence, la limite d'une suite $(u_n)_{n\in\mathbb{N}}$ est unique.
- Une suite convergente est une suite bornée.

Remarque 10

Attention !!!!! La notion de convergence dépend du choix de la norme utilisée. Dans $E = \mathcal{C}^0([0;1],\mathbb{R})$, on considère pour tout $n \in \mathbb{N}$ l'application $f_n : x \longmapsto x^n$. Alors

- $||f_n||_1 = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$ donc $(f_n)_{n \in \mathbb{N}}$ converge vers 0 pour cette norme.
- $||f_n||_{\infty} = 1$ et la suite $(f_n)_{n \in \mathbb{N}}$ diverge pour cette norme.

Proposition 8

- Soient u et v deux suites d'éléments de E convergentes de limites respectives ℓ et ℓ' . Alors pour tout $\lambda \in \mathbb{K}$, $\lambda u + v$ est convergente de limite $\lambda \ell + \ell'$.
- Toute suite extraite d'une suite convergente est une suite convergente de même limite.

3 Comparaison de normes

$\{Définition 7\}$

Soit E un espace vectoriel et N_1, N_2 deux normes sur E. On dit que N_2 domine N_1 s'il existe $k \in \mathbb{R}_+^*$ tel que $N_1 \leq kN_2$.

Remarque 11

Par homogénéité, il suffit de montrer que N_1 est bornée sur la boule unité de E pour N_2 pour montrer que N_2 domine N_1 .

Proposition 9

Si N_2 domine N_1 , toute suite convergente dans (E, N_2) est convergente dans (E, N_1) avec la même limite.

Définition 8

On dit que N_1 et N_2 sont équivalentes si chacune domine l'autre, c'est-à-dire

$$\exists k, k' > 0, \qquad N_1 \le k \, N_2 \quad \text{et} \quad N_2 \le k' \, N_1$$

Proposition 10

Soit E un espace vectoriel et N_1 et N_2 deux normes équivalentes sur E.

- Une suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans (E,N_1) si et seulement si elle est bornée dans (E,N_2) .
- Une suite $(u_n)_{n\in\mathbb{N}}$ converge dans (E, N_1) si et seulement si elle converge dans (E, N_2) et la limite est alors la même.

Remarque 12

Deux normes N_1 et N_2 sont équivalentes si et seulement si il existe deux réels $0 < \alpha \le \beta$ tels que

$$\alpha N_1 \le N_2 \le \beta N_1$$

Pour montrer que deux normes ne sont pas équivalentes, il suffit donc de montrer que l'un des rapports N_1/N_2 ou N_2/N_1 n'est pas borné sur $E \setminus \{0\}$. En pratique, on exhibera une suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de E telle que l'on ait au choix :

- $N_1(u_n)/N_2(u_n) \xrightarrow[n \to +\infty]{} 0 \text{ ou } +\infty$
- $(u_n)_{n\in\mathbb{N}}$ est de limite nulle pour une norme mais pas pour l'autre.
- $(u_n)_{n\in\mathbb{N}}$ est bornée pour une norme mais pas pour l'autre.

Exemple 1

 \bullet Sur \mathbb{K}^n , on a les inégalités

$$||\cdot||_{\infty} \le ||\cdot||_{2} \le ||\cdot||_{1} \le n ||\cdot||_{\infty}$$

Ces trois normes sont donc équivalentes. Au passage, on a également l'inégalité $||\cdot||_1 \leq \sqrt{n} ||\cdot||_2$ par Cauchy-Schwarz (plus efficace que celle ci-dessus).

- Sur $E = \mathcal{C}^0([a;b], \mathbb{R})$, on a les inégalités
 - o Par Cauchy-Schwarz,

$$||\cdot||_1 \le \sqrt{b-a} \,||\cdot||_2$$

o Par majoration directe

$$||\,\cdot\,||_2 \leq \sqrt{b-a}\,||\,\cdot\,||_\infty$$

$$||\cdot||_1 \le (b-a) ||\cdot||_{\infty}$$

En revanche, il n'y a aucune équivalence, ce que l'on peut constater à l'aide de la suite $(f_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad \forall x \in [a; b], \qquad f_n(x) = \frac{(x-a)^n}{(b-a)^n}$$

• Sur $\mathbb{K}[X]$, on peut considérer la suite $(P_n)_{n\in\mathbb{N}}$ définie pour tout n par

$$P_n = 1 + X + \dots + X^n$$

On constate alors que

$$||P_n||_{\infty} = 1$$
 $||P||_2 = \sqrt{n+1}$ $||P_n||_1 = n+1$ $||P_n||_{1,[0;1]} = \sum_{k=1}^n \frac{1}{k} \sim \ln n$

ce qui montre qu'aucune de ces normes ne sont équivalentes l'une à l'autre.

4 Topologie d'un espace vectoriel normé

(Définition 9)

Soit U une partie d'un espace vectoriel normé E. On dit qu'un point a est intérieur à U si

$$\exists r > 0, \qquad B_{a,r} \subset U$$

L'ensemble U est une partie ouverte de E si tout point de U est intérieur à U.

Remarque 13

- Dans la définition ci-dessus, on peut remplacer la boule ouverte par la boule fermée
- On verra plus tard grâce à la caractérisation séquentielle que cette définition est indépendante du choix entre deux normes équivalentes.

Exemple 2

- E et l'ensemble vide sont des ouverts de E.
- ullet Une boule ouverte est comme son nom l'indique un ouvert de E.
- Des intervalles de la forme $]a;b[,]-\infty;b[$ ou $]a;+\infty[$ sont des ouverts de \mathbb{R} .
- Un sous-espace vectoriel d'un espace vectoriel normé E quelconque est un ouvert si et seulement si il est égal à E.

Proposition 11

Une réunion quelconque et une intersection finie d'ouverts est un ouvert.

Remarque 14

Une intersection quelconque d'ouverts n'est pas nécessairement un ouvert comme le montre l'exemple

$$\bigcap_{n\in\mathbb{N}}\left]-\frac{1}{n};\frac{1}{n}\right[=\{0\}$$

Définition 10

On dit qu'un point $a \in E$ est adhérent à une partie A de E si toute boule ouverte centrée en a rencontre A c'est-à-dire

$$\forall r > 0, \qquad B_{a,r} \cap A \neq \emptyset$$

Remarque 15

Tout point de a est bien entendu adhérent à A.

Soit A une partie de E. On appelle adhérence de A l'ensemble des points adhérents à A et on la note \overline{A} . La partie A est dite fermée si $A = \overline{A}$ c'est -à-dire lorsque tout point de E adhérent à A appartient à A.

Proposition 12

Une partie U d'un espace vectoriel E est ouverte (resp. fermée) si et seulement si son complémentaire \overline{U} est fermée (resp. ouverte) dans E.

Exemple 3

- Dans \mathbb{R} , si A est une partie non vide et majorée (resp. minorée) alors sa borne supérieure (resp. inférieure) est adhérente à X.
- Pour tout $a \in E$ et tout r > 0, les éléments de $S_{a,r}$ sont adhérents à $B_{a,r}$.

Proposition 13 (Caractérisation séquentielle de l'adhérence et des fermés)

- ullet Soit A une partie de E et $a\in E$. Le point a est adhérent à A si et seulement si il existe une suite d'éléments de A convergente vers a.
- Une partie F de E est fermée si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de F convergente a sa limite dans F.

- $[0;1]^n$ est un fermé de \mathbb{R}^n muni de $||\cdot||_{\infty}$.
- Si $f: \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction continue, alors son graphe $\Gamma_f = \{(x, f(x)), \ x \in \mathbb{R}\}$ est une partie fermée de \mathbb{R}^2 . La réciproque est vraie lorsque f est une fonction bornée.

Exercice 2

Soit $E = \mathcal{C}\left(\left[0;1\right],\mathbb{R}\right)$ et F le sous-ensemble des fonctions prenant la valeur 1 en 1. On munit E de la norme $\left|\left|\cdot\right|\right|_{\infty}$. F est-il fermé? Même question lorsqu'on munit F de la norme $\left|\left|\cdot\right|\right|_{1}$.

Remarque 16

Soit E un espace vectoriel normé et A une partie de E. On appelle intérieur et frontière de A, notés respectivement A° et ∂A , les ensembles définis par

- A° est le plus grand ouvert contenu dans A;
- ∂A est l'adhérence de A, privé de son intérieur.

(Définition 12)

Une partie A de E est dite dense dans E si tout point de E est adhérent à A, soit en d'autres termes si son adhérence est égale à E.

Exemple 5

- \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}
- $\mathcal{G}\ell_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.
- Dans $E = \mathcal{C}([a;b], \mathbb{K})$ muni de $||\cdot||_{\infty}$, l'ensemble des fonctions polynômiales est une partie dense.

Proposition 14

Les notions topologiques sur un espace vectoriel normé E ne dépendent pas du choix entre deux normes équivalentes.

Remarque 17

 $\overline{\text{Autrement dit}}$, si N_1 et N_2 sont deux normes équivalentes sur un même espace vectoriel E, alors

- une partie U est ouverte dans (E, N_1) si et seulement si elle est ouverte dans (E, N_2) ;
- l'adhérence d'une partie U dans (E, N_1) est égale à l'adhérence de U dans (E, N_2) ;
- et ainsi de suite ...

5 Limite et continuité en un point

Dans toute la suite, on considère deux espaces vectoriels normés E et F. On considère A une partie de E non vide et $f:A \longmapsto F$. De plus, un point a considéré sera toujours supposé adhérent à A. On remarquera qu'il y a alors deux cas

- $a \notin A$ (on parlera alors de limite)
- $a \in A$ (on parlera alors de continuité)

(Définition 13)

On dit que f admet $b \in F$ pour limite en a si

$$\forall \epsilon > 0, \quad \exists \eta > 0, \quad \forall x \in A, \qquad ||x-a|| \leq \eta \quad \Longrightarrow \quad ||f(x)-b|| \leq \epsilon$$

Proposition 15

Si f admet une limite en a, celle-ci est unique.

$\{ \text{ Définition } 14 \}$

On dit que f est continue au point $a \in A$ si f admet une limite en a (qui est alors nécessairement égale à f(a)).

Définition 15

Si la fonction f admet une limite ℓ en $a \notin A$, on dit qu'elle est prolongeable par continuité en a. On appelle prolongement par continuité de f en a la fonction

$$\widetilde{f}: A \cup \{a\} \longrightarrow F$$

$$x \longmapsto f(x) \text{ si } x \in A$$

$$\ell \text{ si } x = a$$

Cette application est continue en a.

Remarque 18

La continuité est une notions locale. On peut se contenter si besoin est de travailler sur un voisinage local de a que l'on peut choisir arbitrairement petit.

Définition 16 (Extension au cas de l'infini)

• (1er cas): On suppose que $F = \mathbb{R}$. On dit que f tend vers $+\infty$ (resp. $-\infty$) en a si

$$\forall M \in \mathbb{R}, \quad \exists \eta > 0, \quad \forall x \in A, \qquad ||x - a|| \le \eta \implies f(x) \ge M \quad (\text{resp. } f(x) \le M$$

• (2ème cas) : On suppose que $E = \mathbb{R}$. Lorsque A n'est pas majorée (resp. minorée), on dit que f admet pour limite $b \in F$ pour limite en ∞ (resp. $-\infty$) si

$$\forall \epsilon > 0, \quad \exists M \in \mathbb{R}, \quad \forall x \in A, \qquad x \ge M \implies ||f(x) - b|| \le \epsilon$$

Remarque 19

Par convention, on dira lorsque A est une partie de \mathbb{R} non majorée (resp. non minorée) que $+\infty$ (resp. $-\infty$) est adhérent à A. Les énoncés qui vont suivre sont alors indépendant de la nature des points et des limites (on entend par là finie ou infinie).

Proposition 16 (Caractérisation séquentielle des limites)

Soit $f: A \longmapsto F$ et a adhérent à A. Alors f admet b pour limite en a si et seulement si pour toute suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de A de limite a, on a $(f(x_n))_{n \in \mathbb{N}}$ convergente de limite b.

(Corollaire 1)

Soit $a \in A$. Alors f est continue en a si et seulement si pour $(x_n)_{n \in \mathbb{N}}$ toute suite d'éléments de A de limite a, on a $(f(x_n))_{n \in \mathbb{N}}$ convergente de limite f(a).

Remarque 20

Ce résultat montre que la notion de limite en un point est indépendante là encore du choix entre deux normes équivalentes, étant que la convergence d'une suite l'est.

Remarque 21

Cette proposition s'utilise régulièrement dans les deux sens

- Dans le sens \Longrightarrow pour trouver des limites de suites de la forme $(f(x_n))_{n\in\mathbb{N}}$.
- Dans le sens \Leftarrow pour justifier qu'une fonction est ou n'est pas continue en un point.

Exercice 3

Etudier la prolongeabilité par continuité en (0,0) de l'application

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto \frac{\sin(xy)}{x^2 + y^2}$$

Soient f, g deux applications de A dans F et $\lambda \in \mathbb{K}$. Si f et g ont des limites finies en a, alors il en est de même de $\lambda f + g$ et

$$\lim_{a} (\lambda f + g) = \lambda \lim_{a} f + \lim_{a} g$$

Soit $f: A \longrightarrow F$ admettant $\ell \in F$ pour limite en a. Alors f est bornée au voisinage de a c'est-à-dire sur l'intersection de A et de

- un intervalle de type $[M; +\infty[$ si $E=\mathbb{R}$ et $a=+\infty$ et $[-\infty; M]$ si $E=\mathbb{R}$ et $a=-\infty$.
- une boule de centre a et de rayon r > 0 dans les autres cas.

Si de plus, la limite ℓ de f est non nulle, alors ||f|| est minorée par un réel strictement positif au voisinage de a.

Soit $f: A \longrightarrow \mathbb{K}$ et $g: A \longmapsto \mathcal{F}$ de limites finies en a. Alors

- $f \cdot g$ a une limite finie en a et $\lim_{a} (f \cdot g) = (\lim_{a} f) \cdot (\lim_{a} g)$
- Si $\lim_a f \neq 0$, alors g/f est définie au voisinage de a, a une limite finie en a et

$$\lim_{a} (g/f) = (\lim_{a} g)/(\lim_{a} f)$$

Soient E, F, G trois espaces vectoriels normés, A une partie de E et B une partie de F. On considère deux applications $f:A \longmapsto F$ et $g:B \longmapsto G$ avec $f(A) \subset B$. Soient finalement a adhérent à A et b adhérent à B. Alors si f admet b pour limite en a et g $c \in G$ pour limite en b, alors $g \circ f$ admet c pour limite en a.

Continuité sur une partie

(Définition 17)

Une application $f: A \longmapsto F$ est dite continue si elle est continue en tout point de A. Elle est dite lipschitzienne s'il existe $k \in \mathbb{R}_+$ tel que

$$\forall x, y \in A, \qquad ||f(x) - f(y)|| \le ||x - y||$$

On dit aussi que f est k-lispchitzienne.

Proposition 20

Une fonction lipschitzienne est continue.

Remarque 22

Le caractère lipschitzien d'une fonction ne dépend pas du choix entre deux normes équivalentes. En revanche, la valeur de la constante k dépend de ce choix.

Exemple 6

- Une norme est 1-lipschitzienne donc continue.
- L'application f_k : $\mathbb{K}^n \longrightarrow \mathbb{K}$ est continue. $(x_1,\ldots,x_n)\longmapsto x_k$
- Soit A une partie non vide de E. Pour tout x dans E, on appelle distance de x à A le réel

$$d(x, A) = \inf\{||x - y||, y \in A\}$$

Alors $d_A: x \longmapsto d(x, A)$ est lipschitzienne donc continue.

Proposition 21

L'ensemble des applications lipschiziennes est un espace vectoriel est une composées de telles fonctions est également lispchitzienne.

Proposition 22

- Toute combinaison linéaire de fonctions continues est une fonction continue.
- Si f et g sont continues sur A et que f est à valeurs scalaires, alors $g \cdot f$ est continue sur A, de même que g/f lorsque f ne s'annule pas.
- Une composée de fonctions continues est une fonction continue.

(Définition 18)

Une fonction $f: \mathbb{K}^n \longrightarrow \mathbb{K}$ est dite polynomiale si elle est combinaison linéaire de fonctions monomiales, c'est-à-dire de la forme

$$(x_1,\ldots,x_n)\longmapsto x_1^{\alpha_1}\cdots x_n^{\alpha_n}$$

avec $\alpha_1, \ldots, \alpha_n$ des entiers naturels.

Proposition 23

Toute fonction polynomiale est continue.

Remarque 23

Le résultat est bien entendu identique pour toute fonction $f: E \longmapsto F$ qui est polynomiale en les coefficients des vecteurs dans une base arbitraire.

Proposition 24

Soient E et F deux espaces vectoriels normés et $f: E \longrightarrow F$ une fonction continue. Alors, l'image réciproque de tout ouvert (resp. fermé) de F est un ouvert (resp. un fermé) de F.

Exemple 7

Si f est une application continue de E dans \mathbb{R} , alors $f^{-1}(\mathbb{R}_+^*)$ est un ouvert de E et $f^{-1}(\{0\})$ et $f^{-1}(\mathbb{R}_+)$ sont des fermés de E.

Remarque 24

Le résultat est faux pour une image directe. Par exemple, \mathbb{R} est fermé mais son image directe par la fonction arctan est l'intervalle ouvert $]-\pi/2;\pi/2[$.

Exemple 8

- Le déterminant est une application continue de $\mathcal{M}_n(\mathbb{K})$ dans K.
- L'ensemble $\mathcal{G}\ell_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

Exercice 4 (Mines)

Soit $(E, ||\cdot||)$ un espace vectoriel normé.

- 1. Soit F un fermé non vide de E et x un élément de E. Montrer que x appartient à $E \setminus F$ si et seulement si d(x,F) > 0.
- 2. Montrer que tout ouvert de E est réunion dénombrable de fermés.

7 Espaces vectoriels normés de dimension finie

Théorème 1 (Equivalence des normes en dimension finie)

Sur un K-espace vectoriel de dimension finie, toutes les normes sont équivalentes.

(Corollaire 2)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E où E est un espace vectoriel de dimension finie p. Si (e_1,\ldots,e_p) est une base de E, on définit les suites coordonnées $(u_{n,1})_{n\in\mathbb{N}},\ldots,(u_{n,p})_{n\in\mathbb{N}}$, éléments de $\mathbb{K}^{\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \qquad u_n = \sum_{i=1}^p u_{n,i} e_i$$

Alors, la suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si les p suites coordonnées convergent. Si pour tout $i\in [1;n]$, on note ℓ_i la limite de $(u_n,i)_{n\in\mathbb{N}}$, alors la limite de $(u_n)_{n\in\mathbb{N}}$ est $\ell=\sum_{i=1}^\ell \ell_i e_i$.

Exemple 9

- Dans \mathbb{K}^p , une suite de vecteurs $(x_n)_{n\in\mathbb{N}}$ converge si et seulement si pour tout $i\in[1;p]$, la suite $((x_n)_i)_{n\in\mathbb{N}}$ de la i-ième coordonnée de x_n est une suite de $\mathbb{K}^\mathbb{N}$ convergente.
- De la même manière, une suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de $\mathcal{M}_p(\mathbb{K})$ est convergente si et seulement si pour tous $(i,j)\in \llbracket 1;p\rrbracket^2$, la suite $((A_n)_{i,j})_{n\in\mathbb{N}}$ du coefficient d'indice (i,j) de A_n est une suite convergente.

Exercice 5

Soit F un sous-espace vectoriel d'un espace vectoriel normé E de dimension finie. Montrer que F est un fermé de E.

Exercice 6

Soit $p \in \mathbb{N}^*$ et A un élément de $\mathcal{M}_p(\mathbb{K})$. Montrer que la suite $(B_n)_{n \in \mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \qquad B_n = \sum_{k=0}^n \frac{A^k}{k!}$$

est une suite convergente dans $\mathcal{M}_p(\mathbb{K})$. Déterminer sa limite lorsque

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Remarque 25

Sa limite est notée $\exp(A)$ et appelée exponentielle de la matrice A. On peut montrer que si A et B commutent, alors

$$\exp(A + B) = \exp(A) \cdot \exp(B)$$

Remarque 26

Sa limite est notée $\exp(A)$ et appelée exponentielle de la matrice A. On peut montrer que si A et B commutent, alors

$$\exp(A + B) = \exp(A) \cdot \exp(B)$$

Proposition 25

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de F. On appelle fonction coordonnées de $f: A \longmapsto F$ les applications $f_1, \dots, f_n: A \longmapsto \mathbb{K}$ telles que

$$\forall x \in A, \qquad f(x) = \sum_{i=1}^{n} f_i(x)e_i$$

Notons $b = \sum_{i=1}^{n} b_i e_i$. Alors f tend vers b en a si et seulement si

$$\forall i \in [1; n], \quad f_i(x) \xrightarrow[r \to a]{} b_i$$

Remarque 27

Notons p la dimension de E, \mathcal{B}_0 une base quelconque et (a_1, \ldots, a_p) les coordonnées de a dans la base \mathcal{B}_0 . L'existence de limite ou la continuité de chacune des applications partielles

$$\forall i \in [1; n], \qquad f_i : t \longmapsto f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_p)$$

n'a aucune conséquence sur l'existence de limite ou la continuité de f en a.

Théorème 2 (Theorème des bornes atteintes)

Toute fonction réelle continue sur un ensemble non vide, fermé et borné d'un espace vectoriel de dimension finie est bornée et atteint ses bornes.

Remarque 28

Ce résultat est un cas particulier en dimension finie du théorème suivant :

« Toute fonction continue sur un compact et à valeurs dans $\mathbb R$ est bornée et atteint ses bornes »

Un compact d'un espace muni d'une distance d est un sous-ensemble qui vérifie l'une des deux propriétés suivantes (qui sont équivalentes) :

- (i) De toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de K, on peut extraire une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ convergente.
- (ii) De toute écriture de K comme une réunion quelconque d'ouverts $K = \bigcup_{i \in I} O_i$, on peut extraire un sous-recouvrement fini, c'est-à-dire qu'il existe une partie finie J de I telle que $K = \bigcup_{i \in J} O_i$.

L'équivalence entre ces deux propriétés est un résultat appelé le théorème de Bolzano-Weierstrass. Compte tenu de cette définition, un compact est toujours un ensemble fermé et borné mais la réciproque n'est systématiquement vraie qu'en dimension finie.

$\{ \text{Corollaire } 3 \}$

Soit $f: K \longrightarrow F$ continue sur K fermé borné non vide. Alors f est bornée et il existe $x \in K$ tel que

$$||f(x)|| = \sup_{K} ||f||$$

Exemple 10

Une application continue définie sur segment [a;b] de \mathbb{R} et à valeurs dans \mathbb{K} est bornée et atteint ses bornes.

Exercice 7

• (Un classique) Soit $f: K \longmapsto \mathbb{R}$ avec \mathbb{K} fermé et borné et f continue. On suppose que f(x) > 0 pour tout $x \in K$. Alors,

$$\exists \alpha > 0, \quad \forall x \in K, \qquad f(x) \ge \alpha$$

Notamment, la fonction 1/f est bornée.

• Soit F une partie fermée d'un espace vectoriel E de dimension finie. Alors la distance d'un point x de E à F est atteinte en au moins un point de F.

Application : Soit f continue sur [a;b] à valeurs dans \mathbb{K} et $n \in \mathbb{N}$. Alors, il existe un polynôme $Q \in \mathbb{K}_n[X]$ tel que

$$||f - Q||_{\infty,[a;b]} = \inf_{P \in \mathbb{K}_n[X]} ||P - f||_{\infty,[a;b]}$$

Remarque 29

Le point en lequel la distance de x à F est atteinte n'est pas nécessairement unique (distance du centre d'une sphère à une sphère par exemple). En revanche, si F est un sous-espace vectoriel et si la norme est une norme euclidienne, il l'est : c'est le projeté orthogonal du vecteur x sur F.

Proposition 26

Soit $u: E \longrightarrow F$ linéaire où E et F sont deux espaces vectoriels de dimension finies, munis d'une norme quelconque. Alors,

• Il existe $k \ge 0$ tel que

$$\forall x \in E, \qquad ||u(x)|| \le k ||x||$$

 \bullet L'application u est lipschitzienne, donc continue.

Proposition 27

Soit E, F, G trois espaces vectoriels de dimension finie et $B: E \times F \longrightarrow G$ une application bilinéaire. Alors,

• Il existe $k \ge 0$ tel que

$$\forall (x,y) \in E \times F, \qquad ||B(x,y)|| \le k \, ||x|| \, ||y||$$

• L'application B est continue sur $E \times F$.

Exemple 11

• Si E est un espace euclidien, l'application

$$(\cdot | \cdot): E \times E \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto x|y$

est bilinéaire donc continue (idem pour le produit vectoriel en dimension 3). Plus généralement, si f et g sont continues à valeurs dans E, il en est de même de $(x,y) \longmapsto (f(x|g(x)))$.

• Le produit matriciel (et donc la composition des endomorphismes) est continu sur $\mathcal{M}_{n,p} \times \mathcal{M}_{p,q}$ (respectivement sur $\mathcal{L}(E,F) \times \mathcal{L}(F,G)$).