Première partie

1.a Commençons par remarquer que pour toute matrice $A \in \mathcal{M}_n$ et pour toute partie $\Sigma \subseteq [1; n]$, on a

$$({}^{t}A)^{(\Sigma)} = {}^{t}(A^{(\Sigma)})$$

En effet, si $A \in \mathcal{M}_n$ et $\Sigma \subseteq \llbracket 1 ; n \rrbracket$, la matrice $({}^tA)^{(\Sigma)}$ est la sous-matrice obtenue en supprimant la i-ème ligne et la i-ème colonne de tA pour tout $i \in \Sigma$, ie la transposée de la sous-matrice obtenue en supprimant la i-ème colonne et la i-ème ligne de A pour tout $i \in \Sigma$. On en déduit l'égalité $({}^tA)^{(\Sigma)} = {}^t(A^{(\Sigma)})$.

Soit $M \in \mathcal{M}_n^+$. Montrons que ${}^tM \in \mathcal{M}_n^+$. Fixons donc $\Sigma \subseteq \llbracket 1 \, ; \, n \rrbracket$ et montrons que le déterminant de $({}^tM)^{(\Sigma)}$ est strictement positif. On vient de voir que $({}^tM)^{(\Sigma)} = {}^t(M^{(\Sigma)})$. Comme le déterminant d'une matrice est égal au déterminant de la transposée et que M est dans \mathcal{M}_n^+ , on obtient $\det({}^tM)^{(\Sigma)} > 0$. Ceci étant vrai pour tout sous-ensemble Σ de $\llbracket 1 \, ; \, n \rrbracket$, on conclut que

$${}^{t}\mathbf{M}\in\mathscr{M}_{n}^{+}$$

L'énoncé n'est pas parfaitement clair sur la définition des matrices de \mathcal{M}_n^+ . En effet, s'il précise que dans le cas $\Sigma = \emptyset$, on pose $\mathcal{M}^{(\emptyset)} = \mathcal{M}$, que se passet-il si $\Sigma = [\![1 ; n]\!]$? La matrice $\mathcal{M}^{([\![1 ; n]\!])}$ est la matrice sans ligne ni colonne. Que vaut son déterminant? Nous passerons donc sur ce détail dans tout ce corrigé.

1.b Soient $M \in \mathcal{M}_n$, $D \in \mathcal{D}_n$ et $\Sigma \subseteq [1; n]$. Les matrices $M^{(\Sigma)}$, $D^{(\Sigma)}$ et $(MD)^{(\Sigma)}$ sont des matrices carrées de taille n – Card Σ .

Notons (C_1, \ldots, C_n) les colonnes de M et (C_1, \ldots, C_n) les colonnes obtenues en supprimant les coefficients d'indice i de toutes les colonnes de M pour tout $i \in \Sigma$. Les colonnes de $M^{(\Sigma)}$ sont alors les C_k pour $k \in [1; n]$ et $k \notin \Sigma$.

Notons maintenant (d_1, \ldots, d_n) les coefficients diagonaux de D. La matrice $D^{(\Sigma)}$ est la matrice diagonale dont les coefficients diagonaux sont les d_k pour $k \in [1; n]$ et $k \notin \Sigma$. Calculons le produit MD avec ces notations:

$$MD = \begin{pmatrix} C_1 & \cdots & C_n \end{pmatrix} \times \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix} = \begin{pmatrix} d_1C_1 & \cdots & d_nC_n \end{pmatrix}$$

En effectuant le produit $M^{(\Sigma)}D^{(\Sigma)}$ de la même manière, on constate que les colonnes de $M^{(\Sigma)}D^{(\Sigma)}$ sont les $d_k\widetilde{C}_k$ pour $k\in [1:n]$ et $k\not\in \Sigma$. Ce sont les mêmes colonnes que si l'on supprime les *i*-ème lignes et *i*-ème colonnes de MD pour tout $i\in \Sigma$. Conclusion:

$$M^{(\Sigma)}D^{(\Sigma)} = (MD)^{(\Sigma)}$$

Il est important de savoir interpréter le produit de deux matrices carrées en fonction des lignes et colonnes de celles-ci. En particulier, étant donné deux matrices carrées A et B de taille n, si on note (C_1, \ldots, C_n) les colonnes de B, alors le produit AB vaut

$$AB = A \times \left(C_1 \quad \cdots \quad C_n\right) = \left(AC_1 \quad \cdots \quad AC_n\right)$$

De plus, si on note $(E_1, ..., E_n)$ la base canonique de \mathbb{R}^n , on obtient pour tout $i \in [1; n]$

$$BE_i = \begin{pmatrix} C_1 & \cdots & C_n \end{pmatrix} \times E_i = C_i$$

Ce sont ces deux résultats qui permettent d'obtenir l'égalité précédente.

1.c Soient $M \in \mathcal{M}_n^+$ et $D \in \mathcal{D}_n$. Fixons $\Sigma \subseteq [1; n]$ et montrons que le déterminant de $(DMD)^{(\Sigma)}$ est strictement positif. En appliquant le résultat de la question 1.b aux matrices $DM \in \mathcal{M}_n$ et $D \in \mathcal{D}_n$, on obtient l'égalité

$$((\mathrm{DM})\mathrm{D})^{(\Sigma)} = (\mathrm{DM})^{(\Sigma)}\mathrm{D}^{(\Sigma)}$$

Montrons maintenant que $(DM)^{(\Sigma)} = D^{(\Sigma)}M^{(\Sigma)}$ en utilisant la transposée pour se ramener au résultat de la question 1.b. On a établi à la question 1.a l'identité ${}^t(A^{(\Sigma)}) = ({}^tA)^{(\Sigma)}$ pour toute matrice $A \in \mathcal{M}_n$. On en déduit

$$^{t}((\mathrm{DM})^{(\Sigma)}) = (^{t}(\mathrm{\,DM}))^{(\Sigma)} = (^{t}\mathrm{M\,}^{t}\mathrm{D})^{(\Sigma)} = (^{t}\mathrm{M\,}\mathrm{D})^{(\Sigma)}$$

Le résultat de la question 1.b donne alors

$$t((\mathrm{DM})^{(\Sigma)}) = (t^{\mathrm{M}})^{(\Sigma)}\mathrm{D}^{(\Sigma)}$$
$$(\mathrm{DM})^{(\Sigma)} = t(\mathrm{D}^{(\Sigma)})^{t}((t^{\mathrm{M}})^{(\Sigma)})$$

soit

Comme D est diagonale, $D^{(\Sigma)}$ l'est aussi et ${}^t(D^{(\Sigma)}) = D^{(\Sigma)}$. De plus, d'après le résultat de la question 1.a, ${}^t(({}^tM)^{(\Sigma)}) = M^{(\Sigma)}$. Il vient

$$(\mathrm{DM})^{(\Sigma)} = \mathrm{D}^{(\Sigma)} \mathrm{M}^{(\Sigma)}$$

et finalement

$$(\mathrm{DMD})^{(\Sigma)} = \mathrm{D}^{(\Sigma)} \mathrm{M}^{(\Sigma)} \mathrm{D}^{(\Sigma)}$$

Comme le déterminant d'un produit de matrices carrées est égal au produit de leurs déterminants,

$$\begin{split} \det((\mathrm{DMD})^{(\Sigma)}) &= \det(\mathrm{D}^{(\Sigma)}\mathrm{M}^{(\Sigma)}\mathrm{D}^{(\Sigma)}) \\ &= \det\mathrm{D}^{(\Sigma)}\,\det\mathrm{M}^{(\Sigma)}\,\det\mathrm{D}^{(\Sigma)} \\ \det((\mathrm{DMD})^{(\Sigma)}) &= \det\mathrm{M}^{(\Sigma)}\,(\det\mathrm{D}^{(\Sigma)})^2 \end{split}$$

Comme $D^{(\Sigma)}$ est une matrice diagonale à coefficients diagonaux dans l'ensemble $\{-1;1\}$, son déterminant est non nul. De plus, comme $M\in \mathcal{M}_n^+$, le déterminant de $M^{(\Sigma)}$ est strictement positif. On en déduit l'inégalité

$$\det((\mathrm{DMD})^{(\Sigma)}) > 0$$

Conclusion:

$$\mathrm{DMD} \in \mathscr{M}_n^+$$

Pour montrer que $\det((DMD)^{(\Sigma)}) > 0$, on peut aussi dire que le déterminant de $D^{(\Sigma)}$ vaut 1 ou -1, ce qui entraîne

$$\det((\mathrm{DMD})^{(\Sigma)}) = \det \mathrm{M}^{(\Sigma)} (\det \mathrm{D}^{(\Sigma)})^2 = \det \mathrm{M}^{(\Sigma)} > 0$$

Soit X = ${}^t(x_1,\ldots,x_n) \in \mathbb{R}^n$. Posons pour tout $i \in [1; n]$

$$d_i = \begin{cases} 1 & \text{si } x_i \geqslant 0 \\ -1 & \text{si } x_i < 0 \end{cases}$$

de sorte que, pour tout $i \in [1; n]$, le produit $d_i x_i$ est positif ou nul. Notons alors D la matrice diagonale dont les coefficients diagonaux sont les d_i . Alors D est bien dans \mathcal{D}_n et

$$DX = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1 x_1 \\ \vdots \\ d_n x_n \end{pmatrix}$$

soit, d'après ce qui précède,

$$DX \succcurlyeq 0$$

3.a Supposons $X \succ 0$. Traduisons les hypothèses matricielles en termes d'inégalités sur des nombres réels.

• $M \in \mathcal{M}_n^+$ donne

$$\det \mathbf{M}^{(\varnothing)} = ad - bc > 0, \qquad \det \mathbf{M}^{(\{2\})} = a > 0 \qquad \text{ et } \qquad \det \mathbf{M}^{(\{1\})} = d > 0$$

• $X \succ 0$ donne

$$x_1 > 0$$
 et $x_2 > 0$

• $0 \geq MX$ donne, puisque $MX = \begin{pmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{pmatrix}$,

$$ax_1 + bx_2 \leqslant 0 \qquad \text{et} \qquad cx_1 + dx_2 \leqslant 0$$

On peut donc écrire

$$ax_1 + bx_2 \leqslant 0$$

$$bx_2 \leqslant -ax_1$$

$$b \leqslant -ax_1/x_2 \qquad \qquad \text{car } x_2 > 0$$

$$b \leqslant 0$$

$$b \le 0$$
 car $a > 0$, $x_1 > 0$ et $x_2 > 0$.

De même,

$$cx_1 + dx_2 \leqslant 0$$

$$cx_1 \leqslant -dx_2$$

$$c \leqslant -dx_2/x_1 \qquad \qquad \operatorname{car} x_1 > 0$$

d'où

$$c \le 0$$
 car $d > 0, x_2 > 0$ et $x_1 > 0$.

3.b Supposons $X \geq 0$ et $0 \geq MX$ et notons $X = {}^t(x_1, x_2)$. Puisque les coordonnées $\overline{x_1}$ et x_2 sont positives ou nulles, elles vérifient une et une seule des quatre propriétés suivantes:

- $x_1 > 0$ et $x_2 > 0$;
- $x_1 = 0 \text{ et } x_2 > 0$;
- $x_1 > 0$ et $x_2 = 0$;
- $x_1 = 0$ et $x_2 = 0$.

Montrons que les 3 premières sont exclues.

soit

c'est-à-dire

devient

 $\bullet\,$ Si $x_1>0$ et $x_2>0,$ alors les calculs du 3.a sont valides et donnent

$$b \leqslant \frac{-ax_1}{x_2}$$
 et $c \leqslant \frac{-dx_2}{x_1}$

En multipliant ces deux inégalités entres nombres réels négatifs, on trouve

$$bc \geqslant ad \frac{x_1}{x_2} \frac{x_2}{x_1} = ad$$
$$0 \geqslant ad - bc$$
$$0 \geqslant \det M$$

ce qui est exclu car $M \in \mathcal{M}_n^+$.

• Si $x_1 = 0$ et $x_2 > 0$, alors $cx_1 + dx_2 \le 0$

et même $d \leq 0$

soit $\det M^{(\{1\})} \le 0$

ce qui est exclu car $M \in \mathcal{M}_n^+$.

• Si $x_1 > 0$ et $x_2 = 0$, $ax_1 + bx_2 \le 0$

 $ax_1 \leqslant 0$

 $dx_2 \leqslant 0$

 $a \leqslant 0$

soit $\det M^{(\{2\})}\leqslant 0$

ce qui est exclu car $M \in \mathcal{M}_n^+$.

Il ne reste finalement que la dernière possibilité, $x_1 = 0$ et $x_2 = 0$, qui revient à

$$X = 0$$

3.c Cherchons X sous la forme $X = {}^t(1,y)$ avec $y \in \mathbb{R}$. On voudrait $X \succ 0$ et $MX \succ 0$, soit

$$y > 0$$
, $a + by > 0$ et $c + dy > 0$

Si X est solution, alors λX l'est aussi pour tout $\lambda > 0$. En notant x la première coordonnée de X, le vecteur (1/x)X est bien solution (x>0) et du type $^t(1,y)$. Se restreindre à la recherche de solutions sous cette forme est donc raisonnable, en plus d'être bien pratique.

Distinguons trois cas.

• Cas b > 0. Les conditions deviennent

$$\begin{cases} y>0\\ y>-\frac{a}{b}\\ y>-\frac{c}{d} \end{cases} \quad \text{car } d=\det \mathcal{M}^{(\{1\})}>0$$

Il suffit donc de prendre $y = 1 + \max(0, -a/b, -c/d)$.

• Cas b = 0. Les conditions deviennent

$$\begin{cases} y>0\\ a>0 & \text{qui est toujours vrai}\\ y>-\frac{c}{d} \end{cases}$$

Il suffit donc de prendre $y = 1 + \max(0, -c/d)$.

• Cas b < 0. Les conditions deviennent

$$\begin{cases} y > 0 \\ y < -\frac{a}{b} \\ y > -\frac{c}{d} \end{cases}$$

ad - bc > 0, a > 0 et d > 0

Or, comme $\mathcal{M} \in \mathscr{M}_n^+,$ les trois inégalités suivantes sont vraies

ce qui donne
$$ad>bc$$
 puis
$$\frac{a}{b}<\frac{c}{d} \qquad \qquad {\rm car}\;b<0\;{\rm et}\;d>0$$
 soit
$$-\frac{a}{b}>-\frac{c}{d}$$

En prenant la moyenne de ces deux derniers nombres réel,

$$y = \frac{-a/b + (-c/d)}{2}$$

on obtient y<-a/b et y>-c/d mais pas nécessairement y>0. Par contre, comme -a/b>0, si $-c/d\geqslant 0,$ alors

$$y = \frac{-a/b + (-c/d)}{2}$$

convient (il vérifie bien y > 0) et si -c/d < 0, alors

$$y = \frac{-a/b}{2}$$

convient (puisque -a/b > y > 0 > -c/d).

Dans tous les cas,

Il existe
$$X \in \mathbb{R}^2$$
 vérifiant $X \succ 0$ et $MX \succ 0$.

DEUXIÈME PARTIE

4 Soit $z \in \mathcal{O}$. Si z = 0, la série considérée est la série nulle, qui est convergente. Sinon, le terme général de la série $\sum \frac{1}{kn+1} z^{kn+1}$ ne s'annule jamais: on peut donc appliquer la règle de d'Alembert à la série $\sum \left| \frac{1}{kn+1} z^{kn+1} \right|$.

$$\frac{\frac{1}{k(n+1)+1}z^{k(n+1)+1}}{\frac{1}{kn+1}z^{kn+1}} = |z^k| \frac{kn+1}{k(n+1)+1} \xrightarrow[n \to \infty]{} |z^k|$$

Comme $z \in \mathcal{O}$, on a $|z^k| < 1$ et on conclut, grâce à la règle de d'Alembert, que la série $\sum \frac{1}{kn+1} z^{kn+1}$ est absolument convergente, donc convergente. Ainsi,

Pour tout
$$z \in \mathcal{O}$$
 la série $\sum \frac{1}{kn+1} z^{kn+1}$ converge.

Il ne faut surtout pas oublier que la règle de d'Alembert ne s'applique qu'aux séries dont le terme général est positif et ne s'annule jamais, ou à tout le moins est non nul à partir d'un certain rang.

5.a La fonction F est de classe \mathscr{C}^1 si et seulement si ses deux fonctions coordonnées u et v le sont. Fixons donc $X=(x_1,x_2)\in\mathcal{O}$ et commençons par montrer que u et v admettent une dérivée partielle en X par rapport à leur première variable. Puisque \mathcal{O} est un ouvert, il existe $\delta>0$ tel que, pour tout élément $h\in[-\delta;\delta]$, (x_1+h,x_2) appartienne à \mathcal{O} . Montrons que la fonction

$$h \in [-\delta; \delta] \mapsto f(x_1 + h + ix_2) = u(x_1 + h, x_2) + iv(x_1 + h, x_2)$$

est dérivable en utilisant le théorème de dérivation des séries de fonctions. Notons pour tout $n\geqslant 0$

$$f_n: h \mapsto \frac{1}{kn+1}(x_1+h+ix_2)^{kn+1}$$

Ces fonctions sont de classe \mathscr{C}^1 sur $[-\delta; \delta]$ et la série $\sum f_n$ y converge simplement, sa somme étant la fonction $h \mapsto f(x_1 + h + ix_2)$. Les fonctions dérivées sont

$$f'_n: h \mapsto (x_1 + h + \mathrm{i} x_2)^{kn}$$

Or, la fonction $h\mapsto |x_1+h+\mathrm{i} x_2|$ étant continue sur le segment $[-\delta;\delta]$, elle est bornée et atteint ses bornes. On en déduit qu'il existe $h_m\in[-\delta;\delta]$ vérifiant

$$|x_1 + h + ix_2| \le |x_1 + h_m + ix_2|$$

pour tout $h \in [-\delta; \delta]$. Notons $r = |x_1 + h_m + ix_2|$. D'après la définition de δ , on a $(x_1 + h_m, x_2) \in \mathcal{O}$ donc $0 \le r < 1$. On en conclut que

$$\forall n \geqslant 0 \quad \forall h \in [-\delta; \delta] \qquad ||f_n'||_{\infty} \leqslant r^{kn}$$

Puisque $r^k \in [0;1[$, la série géométrique $\sum r^{kn}$ est convergente et, d'après les théorèmes de comparaison pour les séries positives, la série $\sum ||f_n'||_{\infty}$ converge, ce qui signifie que la série de fonctions $\sum f_n'$ converge normalement sur $[-\delta;\delta]$. On déduit alors du théorème de dérivation des séries de fonctions que la fonction

$$h \mapsto \sum_{n=0}^{\infty} f_n(h) = f(x_1 + h + ix_2)$$

est de classe \mathscr{C}^1 sur $[-\delta;\delta]$ et que sa dérivée est

$$h \mapsto \sum_{n=0}^{\infty} (x_1 + h + ix_2)^{kn} = \frac{1}{1 - (x_1 + h + ix_2)^k}$$

Or, pour tout $h \in [-\delta; \delta]$, on a

$$f(x_1 + h + ix_2) = u(x_1 + h, x_2) + iv(x_1 + h, x_2)$$

On déduit des théorèmes généraux sur la dérivation des fonctions d'une variable réelle et à valeurs complexes que les fonctions

$$h \mapsto u(x_1 + h, x_2)$$
 et $h \mapsto v(x_1 + h, x_2)$

sont de classes \mathscr{C}^1 sur $[-\delta; \delta]$, de dérivées respectives

$$h \mapsto \operatorname{Re}\left(\frac{1}{1 - (x_1 + h + \mathrm{i}x_2)^k}\right)$$
 et $h \mapsto \operatorname{Im}\left(\frac{1}{1 - (x_1 + h + \mathrm{i}x_2)^k}\right)$

En particulier, les fonctions u et v admettent

$$\operatorname{Re}\left(\frac{1}{1-(x_1+\mathrm{i}x_2)^k}\right) \qquad \text{et} \qquad \operatorname{Im}\left(\frac{1}{1-(x_1+\mathrm{i}x_2)^k}\right)$$

comme dérivées partielles en (x_1, x_2) par rapport à leur première variable.

En considérant un $\gamma > 0$ tel que, pour tout $t \in [-\gamma; \gamma]$, $(x_1, x_2 + t)$ appartienne à \mathcal{O} , et les fonctions $g_n : h \mapsto \frac{1}{kn+1} (x_1 + \mathrm{i}(x_2 + h))^{kn+1}$ définies sur $[-\gamma; \gamma]$, on montre de la même manière que les fonctions u et v admettent

$$\operatorname{Re}\left(\frac{\mathrm{i}}{1-(x_1+\mathrm{i}x_2)^k}\right) \qquad \text{et} \qquad \operatorname{Im}\left(\frac{\mathrm{i}}{1-(x_1+\mathrm{i}x_2)^k}\right)$$

comme dérivées partielles respectives en (x_1, x_2) par rapport à leur seconde variable.

Par continuité des fonctions Re et Im, ces quatre dérivées partielles sont continues sur \mathcal{O} et les fonctions u et v sont de classe \mathscr{C}^1 sur \mathcal{O} , c'est-à-dire que

La fonction F est de classe
$$\mathscr{C}^1$$
 sur \mathcal{O} avec
$$\frac{\partial F}{\partial x_1}(X) = \begin{pmatrix} \frac{\partial u}{\partial x_1}(X) \\ \frac{\partial v}{\partial x_1}(X) \end{pmatrix} = \begin{pmatrix} \operatorname{Re}\left(\frac{1}{1-\zeta}\right) \\ \operatorname{Im}\left(\frac{1}{1-\zeta}\right) \end{pmatrix}$$

$$\frac{\partial F}{\partial x_2}(X) = \begin{pmatrix} \frac{\partial u}{\partial x_2}(X) \\ \frac{\partial v}{\partial x_2}(X) \end{pmatrix} = \begin{pmatrix} -\operatorname{Im}\left(\frac{1}{1-\zeta}\right) \\ \operatorname{Re}\left(\frac{1}{1-\zeta}\right) \end{pmatrix}$$

 $[\mathbf{5.b}]$ Soit $X \in \mathcal{O}$. D'après la question précédente, la matrice jacobienne de F en X vaut

$$J_{F}(X) = \begin{pmatrix} \frac{\partial u}{\partial x_{1}}(z) & \frac{\partial v}{\partial x_{1}}(z) \\ \frac{\partial u}{\partial x_{2}}(z) & \frac{\partial v}{\partial x_{2}}(z) \end{pmatrix} = \begin{pmatrix} \operatorname{Re}\left(\frac{1}{1-\zeta}\right) & -\operatorname{Im}\left(\frac{1}{1-\zeta}\right) \\ \operatorname{Im}\left(\frac{1}{1-\zeta}\right) & \operatorname{Re}\left(\frac{1}{1-\zeta}\right) \end{pmatrix}$$

en ayant posé $X = {}^t(x_1, x_2)$ et $\zeta = x_1 + ix_2$. On a alors

$$\det J_F(X) = \left(\operatorname{Re} \left(\frac{1}{1-\zeta} \right) \right)^2 + \left(\operatorname{Im} \left(\frac{1}{1-\zeta} \right) \right)^2 = \left| \frac{1}{1-\zeta} \right|^2 > 0$$

et

$$\det J_F(X)^{(\{1\})} = \det J_F(X)^{(\{2\})} = \operatorname{Re}\left(\frac{1}{1-\zeta}\right) = \operatorname{Re}\left(\frac{1-\overline{\zeta}}{(1-\zeta)(1-\overline{\zeta})}\right) = \frac{1-\operatorname{Re}\left(\zeta\right)}{\left|1-\zeta\right|^2}$$

Or $\zeta \in \mathcal{O}$, donc Re $(\zeta) \leq |\zeta| < 1$ et on obtient bien

$$\det J_F(X)^{(\{1\})} = \det J_F(X)^{(\{2\})} > 0$$

Conclusion:

$$J_F(X)\in \mathscr{M}_2^+$$

On a testé la condition det $J_F(X)^{(\Sigma)}>0$ pour Σ valant \varnothing , $\{1\}$ et $\{2\}$. Il manque donc le cas $\Sigma=\{1,2\}$. Mais la matrice $J_F(X)^{\{1,2\}}$ est une matrice de taille 0×0 . On est bien obligé d'admettre qu'une telle matrice a un déterminant strictement positif.

Troisième partie

[6.a] Puisque $P \in \mathcal{M}_n^+$, son déterminant est non nul et P est une matrice inversible. Ainsi, le système linéaire

$$P\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

est de Cramer. On peut donc utiliser les formules de Cramer, qui donnent ici

$$u_1 = \frac{\det P_1}{\det P}$$

où la matrice P_1 est la matrice P dans laquelle on a remplacé la première colonne par la colonne $^t(1,0,\ldots,0)$. La matrice P_1 est donc de la forme

$$P_1 = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & & & \\ \vdots & & P^{\{1\}} \\ 0 & & & \end{pmatrix}$$

En développant son déterminant par rapport à sa première colonne, on obtient ainsi $\det P_1 = \det P^{(\{1\})}$. Comme $P \in \mathscr{M}_n^+$, les déterminants $\det P^{(\{1\})}$ et $\det P$ sont strictement positifs. Finalement,

$$u_1 = \frac{\det \mathbf{P}^{(\{1\})}}{\det \mathbf{P}} > 0$$

6.b Comme C est la première colonne de la matrice P^{-1} , la première colonne du produit PP^{-1} est égale au produit PC mais également à $^t(1,0,\ldots,0)$. Le vecteur C est donc solution du système de Cramer de la question 6.a. Par unicité des solutions des systèmes de Cramer, on obtient

$$c_1 = u_1 > 0$$

Ainsi, l'ensemble $E = \{x_i/c_i \mid c_i > 0, i \in [1; n]\}$ est non vide. De plus, comme $X \geq 0$, l'ensemble E est inclus dans \mathbb{R}^+ et est donc minoré par 0. Finalement, puisque E est une partie non vide minorée de \mathbb{R} , il admet une borne inférieure et

$$m = \inf \left\{ \frac{x_i}{c_i} \mid c_i > 0, i \in [1; n] \right\} \text{ existe.}$$

Puisque E est minoré par 0,

 $m \geqslant 0$

On aurait aussi pu dire que E est une partie non vide et finie de \mathbb{R} et donc que sa borne inférieure existe et est même atteinte, ce qui justifie l'existence de l'entier j.

[6.c] Montrons que Y ≥ 0 . Fixons donc $i \in [1; n]$ et montrons que le i-ème coefficient de Y, à savoir $x_i - mc_i$, est positif. Distinguons deux cas:

• Si $c_i > 0$, alors par définition de m on a

$$m \leqslant \frac{x_i}{c_i}$$
 d'où $mc_i \leqslant x_i$ et $x_i - mc_i \geqslant 0$

• Si $c_i \leq 0$, alors d'après la question 6.b, on a $m \geq 0$ donc $mc_i \leq 0$ et finalement

$$x_i - mc_i \geqslant x_i \geqslant 0$$
 puisque $X \succcurlyeq 0$

Conclusion:

$$Y \succcurlyeq 0$$

Montrons maintenant que $0 \ge PY$. On a déjà remarqué à la question 6.b que $PC = {}^t(1,0,\ldots,0)$. Un rapide calcul donne donc

$$PY = PX - mPC = PX - m \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = PX - \begin{pmatrix} m \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Or, par hypothèse $0 \geq PX$ et d'après la question 6.b, $m \geq 0$. Les coefficients de PY sont donc tous négatifs ou nuls et

$$0 \succcurlyeq PY$$

6.d Appliquons la propriété Q_{n-1} .

Cette troisième partie est une vaste récurrence : il faut bien chercher à appliquer l'hypothèse de récurrence à un moment ou à un autre.

Vérifions tout d'abord que $\widetilde{P} \in \mathcal{M}_{n-1}^+$. Notons pour cela

$$\phi \colon \left\{ \begin{bmatrix} \mathbbm{1} \, ; \, n-1 \end{bmatrix} \longrightarrow \llbracket \, \mathbbm{1} \, ; \, n \rrbracket \right.$$

$$i \longmapsto \left\{ \begin{array}{cc} i & \text{si } i < j \\ i+1 & \text{si } i \geqslant j \end{array} \right.$$

Ainsi, pour tout $\Sigma \subseteq \llbracket 1 \, ; \, n-1 \rrbracket$, on a $\widetilde{\mathbf{P}}^{(\Sigma)} = \left(\mathbf{P}^{(\{j\})}\right)^{(\Sigma)} = \mathbf{P}^{(\phi(\Sigma))}$ d'où det $\widetilde{\mathbf{P}}^{(\Sigma)} > 0$ puisque $\mathbf{P} \in \mathscr{M}_n^+$. On en déduit que $\widetilde{\mathbf{P}} \in \mathscr{M}_{n-1}^+$. L'hypothèse $\widetilde{\mathbf{Y}} \succcurlyeq 0$ découle du premier résultat de la question 6.c: $\mathbf{Y} \succcurlyeq 0$. Montrons maintenant que $\mathbf{0} \succcurlyeq \widetilde{\mathbf{P}}\widetilde{\mathbf{Y}}$. Notons $\mathbf{Y} = {}^t(y_1,\ldots,y_n), \ \mathbf{P} = (p_{i,j})_{0\leqslant i,j\leqslant n}$ et $\widetilde{\mathbf{P}}\widetilde{\mathbf{Y}} = {}^t(\alpha_1,\ldots,\alpha_{n-1})$. On veut montrer que les α_i sont négatifs ou nuls. On a montré à la question 6.d que $\mathbf{0} \succcurlyeq \mathbf{P}\mathbf{Y}$, ce qui signifie

$$\forall i \in [1; n] \qquad \sum_{k=1}^{n} p_{i,k} y_k \leqslant 0$$

$$\forall i \in [1; n-1] \qquad \alpha_i = \begin{cases} \sum_{k=1}^{n} p_{i,k} y_k & \text{si } i < j \\ \sum_{\substack{k=1 \ k \neq j}}^{n} p_{i+1,k} y_k & \text{si } i \geqslant j \end{cases}$$

$$(1)$$

Or,

Que valent les $p_{i,j}y_j$? Par définition $y_j=x_i-mc_j=x_j-(x_j/c_j)c_j=0$. Par suite $p_{i,j}y_j=0$ et on peut réécrire

$$\forall i \in [1; n-1] \qquad \alpha_i = \begin{cases} \sum_{k=1}^n p_{i,k} y_k & \text{si } i < j \\ \sum_{k=1}^n p_{i+1,k} y_k & \text{si } i \geqslant j \end{cases}$$

ce qui montre, en utilisant les relations (??), que les α_i sont tous négatifs ou nuls. On en déduit $0 \succcurlyeq \widetilde{P}\widetilde{Y}$.

Attention, le vecteur \widetilde{PY} n'est pas a priori le vecteur PY auquel on a supprimé le j-ième coefficient. Cela ne marche que parce que $y_j=0$.

On peut ainsi appliquer la propriété Q_{n-1} à \widetilde{P} et \widetilde{Y} et conclure que

$$\widetilde{\mathbf{Y}} = \mathbf{0}$$

Comme on a également montré que $y_j=0$, il vient immédiatement

$$Y = 0$$

6.e On vient de montrer que Y = 0. Or Y = X – mC, d'où l'on tire X = mC puis $PX = PmC = {}^t(m, 0, ..., 0)$. On a également vu que $m \ge 0$. Conclusion:

$$PX \succcurlyeq 0$$

6.f Le vecteur PX vérifie PX ≥ 0 (on vient de le montrer) et $0 \geq PX$ (par hypothèse). On en déduit que PX = 0 puisque ses coefficients sont positifs et négatifs donc nuls.

Or, on a montré à la question 6.e que $PX = {}^t(m, 0, ..., 0)$. On a donc m = 0 et par suite Y = X - mC = X. Le résultat de la question 6.d permet alors de conclure que X = Y = 0.

On a donc montré que, pour tout $n \ge 2$, si la propriété Q_{n-1} est vraie, alors la propriété Q_n est vraie.

Établissons la propriété \mathcal{Q}_1 . Soit $P \in \mathcal{M}_1^+$. La matrice P est de taille 1×1 , de déterminant strictement positif: c'est un réel strictement positif. Si $X \in R$ vérifie $X \succcurlyeq 0$, soit $X \geqslant 0$, et $0 \succcurlyeq PX$, soit $0 \geqslant PX$, il vérifie également $X \geqslant 0 \geqslant X$ et donc X = 0. On en déduit que \mathcal{Q}_1 est vraie.

Finalement, on a montré par récurrence que

Pour tout
$$n\geqslant 1,$$
 si $\mathbf{P}\in \mathscr{M}_n^+$ et $\mathbf{X}\in \mathbb{R}^n$ vérifient $\mathbf{X}\succcurlyeq 0$ et $0\succcurlyeq \mathbf{P}\mathbf{X},$ alors $\mathbf{X}=0.$

Il ne faut pas se contenter de montrer que X=0. Il faut aussi, et surtout, conclure la récurrence.

QUATRIÈME PARTIE

7 Montrons (\mathcal{P}_1) . Soit $M \in O(1)$. La matrice M vaut (1) ou (-1). Dans les deux cas, $M \in \mathcal{D}_1$. En prenant X = (1) et D = M, on obtient bien $X \succ 0$, $D \in \mathcal{D}_1$ et MX = DX. Ainsi,

La propriété
$$(\mathcal{P}_1)$$
 est vraie.

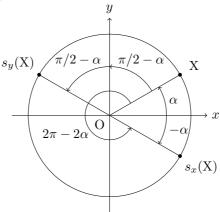
Montrons maintenant (\mathcal{P}_2) . Fixons donc $M \in O(2)$. La matrice M est soit la matrice d'une rotation, soit la matrice d'une symétrie axiale et on sait qu'il existe un angle $\theta \in [0; 2\pi[$ tel que

$$M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{ou} \quad M = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

le premier cas correspondant à une rotation, le deuxième à une symétrie axiale. Fixons un tel angle θ . Si $\theta = 0$ ou $\theta = \pi$, M est dans \mathcal{D}_2 et il suffit de prendre D = M et $X = {}^t(1,1)$. Supposons donc $\theta \neq 0$ et $\theta \neq \pi$.

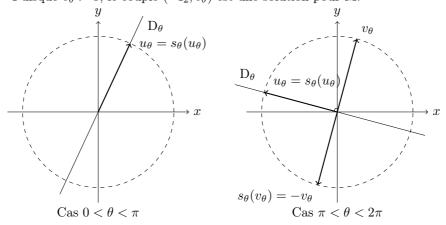
• Si M est la matrice d'une rotation, cherchons un X sous la forme $\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ avec $\alpha \in]0;\pi/2[$ de telle sorte que X $\succ 0$. On remarque qu'il existe en tout et pour tout quatre matrices dans \mathcal{D}_2 : l'identité, la matrice D_x de la symétrie axiale s_x par rapport à l'axe O_x , la matrice D_y de la symétrie axiale s_y par rapport à l'axe O_y et enfin la matrice $-I_2$ qui est la matrice de la symétrie centrale par rapport à O. On cherche donc un O0 tel que O1 de O2 de la symétrie centrale par rapport à O3. On cherche donc un O4 tel que O5 de O7 de O8 de la symétrie centrale par rapport à O8. On cherche donc un O8 tel que O9 de la symétrie centrale par rapport à O9. On cherche donc un O9 de la symétrie centrale par rapport à O9. On cherche donc un O9 de la symétrie centrale par rapport à O9. On cherche donc un O9 de la symétrie centrale par rapport à O9 de la symétrie existe O9 de la symétrie ex

et $s_y(\mathbf{X})$ soit égal à θ . Faisons un dessin en plaçant \mathbf{X} et ses images par les symétries s_x et s_y .



On remarque que si α vérifie $\theta=2(\pi/2-\alpha)$, c'est-à-dire $\alpha=\pi/2-\theta/2$, alors MX = $s_y(X)$, et que si α vérifie $\theta=2\pi-2\alpha$, c'est-à-dire $\alpha=\pi-\theta/2$, alors MX = $s_x(X)$. Distinguons alors deux cas:

- Si $0 < \theta < \pi$, alors en posant $\alpha = \pi/2 \theta/2$ on a bien $\alpha \in]0; \pi/2[$ et donc $X = {}^t(\cos\alpha, \sin\alpha)$ vérifie $X \succ 0$ et $MX = D_yX$ avec $D_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathcal{D}_2$. On en conclut que (D_y, X) est une solution pour M.
- Si $\pi < \theta < 2\pi$, alors en posant $\alpha = \pi \theta/2$ on a bien $\alpha \in]0; \pi/2[$ et donc $X = {}^t(\cos\alpha, \sin\alpha)$ vérifie $X \succ 0$ et $MX = D_xX$ avec $D_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{D}_2$. On en conclut que (D_x, X) est une solution pour M.
- Si $M = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, M est la matrice de la symétrie s_{θ} par rapport à la droite D_{θ} passant par O et de vecteur directeur $u_{\theta} = {}^t(\cos(\theta/2), \sin(\theta/2))$. Le vecteur u_{θ} est invariant par la symétrie s_{θ} : $Mu_{\theta} = u_{\theta} = I_2u_{\theta}$. On en déduit que si $0 < \theta < \pi$, alors $u_{\theta} > 0$ et le couple (I_2, u_{θ}) est une solution pour M. Si $\pi < \theta < 2\pi$, le vecteur $v_{\theta} = {}^t(\cos(\theta/2 \pi/2), \sin(\theta/2 \pi/2))$ est un vecteur orthogonal à u_{θ} . Il vérifie $s_{\theta}(v_{\theta}) = -v_{\theta}$ c'est-à-dire $Mv_{\theta} = -v_{\theta} = -I_2v_{\theta}$. Puisque $v_{\theta} > 0$, le couple $(-I_2, v_{\theta})$ est une solution pour M.



Dans tous les cas, la matrice M admet une solution.

La propriété (\mathcal{P}_2) est vraie.

8 Soit $D \in \mathcal{D}_n$ vérifiant ${}^tX_1DX_2 = {}^tX_1X_2$. En notant $\varepsilon_1, \ldots, \varepsilon_n$ les éléments diagonaux de $D, X_1 = {}^t(x_1, \ldots, x_n)$ et $X_2 = {}^t(y_1, \ldots, y_n)$. On peut écrire

$${}^{t}\mathbf{X}_{1}\,\mathbf{D}\mathbf{X}_{2} = \sum_{i=1}^{n} x_{i}\varepsilon_{i}y_{i}$$
 et ${}^{t}\mathbf{X}_{1}\,\mathbf{X}_{2} = \sum_{i=1}^{n} x_{i}y_{i}$

soit

$$\sum_{i=1}^{n} (1 - \varepsilon_i) x_i y_i = 0$$
 en faisant la différence.

Or les x_i et les y_i sont positifs et les ε_i valent 1 ou -1; les termes $(1 - \varepsilon_i)x_iy_i$ sont donc tous positifs ou nuls. Comme leur somme est nulle, ils sont tous nuls

$$\forall i \in [1; n] \qquad (1 - \varepsilon_i) x_i y_i = 0$$

Enfin, puisque les x_i et les y_i sont non nuls, les ε_i valent tous 1, c'est-à-dire

$$D = I_n$$

Soient (D_1, X_1) et (D_2, X_2) deux solutions pour $M \in O(n)$. Calculons le produit ${}^t(MX_1)MX_2$ de deux façons différentes:

$$\begin{split} {}^t(\,\mathrm{MX}_1)\mathrm{MX}_2 &= \, {}^t\mathrm{X}_1 \,\, {}^t\mathrm{M}\,\mathrm{MX}_2 \\ &= \, {}^t\mathrm{X}_1\,\mathrm{I}_n\mathrm{X}_2 = \, {}^t\mathrm{X}_1\,\mathrm{X}_2 \qquad \qquad \mathrm{car}\,\,\mathrm{M} \in \mathrm{O}(n) \\ {}^t(\,\mathrm{MX}_1)\mathrm{MX}_2 &= \, {}^t(\,\mathrm{D}_1\mathrm{X}_1)\mathrm{D}_2\mathrm{X}_2 \\ &= \, {}^t\mathrm{X}_1(\,{}^t\mathrm{D}_1\,\mathrm{D}_2)\mathrm{X}_2 \\ {}^t\mathrm{X}_1\,\mathrm{X}_2 &= \, {}^t\mathrm{X}_1(\,\mathrm{D}_1\mathrm{D}_2)\mathrm{X}_2 \qquad \qquad \mathrm{car}\,\,\mathrm{D}_1 \,\,\mathrm{est}\,\,\mathrm{diagonale} \end{split}$$

et

d'où

Du fait que D_1 et D_2 sont des matrices diagonales à coefficients diagonaux dans $\{-1,1\}$, on sait que (D_1D_2) est aussi une telle matrice, ie $(D_1D_2) \in \mathcal{D}_n$. D'après ce que l'on vient de montrer, on conclut que $D_1D_2 = I_n$. En notant $\varepsilon'_1, \ldots, \varepsilon'_n$ les éléments diagonaux de D_1 , et $\varepsilon''_1, \ldots, \varepsilon''_n$ les éléments diagonaux de D_2 , on trouve pour tout $i \in [1; n]$, $\varepsilon'_i \varepsilon''_i = 1$ soit $\varepsilon'_i = \varepsilon''_i$ puisque ε'_i et ε''_i valent 1 ou -1. On peut en conclure que

$$D_1 = D_2$$

9.a On sait que M est orthogonale si et seulement si ${}^tMM = I_n$. Cette condition s'écrit également

$${}^{t}\mathbf{M}\,\mathbf{M} = \begin{pmatrix} {}^{t}\mathbf{W} & \mathbf{V} \\ {}^{t}\mathbf{U} & \rho \end{pmatrix} \times \begin{pmatrix} \mathbf{W} & \mathbf{U} \\ {}^{t}\mathbf{V} & \rho \end{pmatrix} = \begin{pmatrix} {}^{t}\mathbf{W}\,\mathbf{W} + \mathbf{V}^{\,t}\mathbf{V} & {}^{t}\mathbf{W}\,\mathbf{U} + \mathbf{V}\rho \\ {}^{t}\mathbf{U}\,\mathbf{W} + \rho^{\,t}\mathbf{V} & {}^{t}\mathbf{U}\,\mathbf{U} + \rho^{2} \end{pmatrix} = \mathbf{I}_{n}$$

$$\begin{cases} {}^{t}\mathbf{W}\,\mathbf{W} + \mathbf{V}^{\,t}\mathbf{V} = \mathbf{I}_{n-1} \\ {}^{t}\mathbf{W}\,\mathbf{U} + \mathbf{V}\rho = 0 \\ {}^{t}\mathbf{U}\,\mathbf{W} + \rho^{\,t}\mathbf{V} = 0 \end{cases}$$

soit

Les deuxième et troisième égalités étant la transposée l'une de l'autre, on obtient

M est orthogonale si et seulement si
$$\begin{cases} {}^{t}WW + V{}^{t}V = I_{n-1} \\ {}^{t}WU + \rho V = 0 \\ {}^{t}UU + \rho^{2} = 1 \end{cases}$$

Comme ${}^t U U$ est une somme de carrés, on a ${}^t U U \geqslant 0$ et

$$1 = {}^t\mathbf{U}\,\mathbf{U} + \rho^2 \geqslant \rho^2$$

d'où

$$|\rho| \leqslant 1$$

Supposons $|\rho| = 1$. L'équation ${}^t U U + \rho^2 = 1$ devient ${}^t U U = 0$. On en déduit U = 0 (le carré de sa norme euclidienne canonique étant nul). De ${}^t U W + \rho {}^t V = 0$, on tire alors V = 0 et de ${}^t W W + V {}^t V = I_{n-1}$ on conclut que ${}^t W W = I_{n-1}$:

W est orthogonale.

Puisque $W \in O(n-1)$, d'après l'hypothèse de récurrence (\mathcal{P}_{n-1}) , W admet une solution (D', X'). Notons $X = {}^t({}^tX', 1)$. Comme U et V sont nuls d'après ce qui précède,

$$\begin{split} \mathbf{MX} &= \begin{pmatrix} \mathbf{W} & \mathbf{0} \\ \mathbf{0} & \rho \end{pmatrix} \begin{pmatrix} \mathbf{X}' \\ \mathbf{1} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{WX}' \\ \rho \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{D}'\mathbf{X}' \\ \rho \end{pmatrix} \text{ car } (\mathbf{D}', \mathbf{X}') \text{ est une solution pour } \mathbf{W} \\ &= \begin{pmatrix} \mathbf{D}' & \mathbf{0} \\ \mathbf{0} & \rho \end{pmatrix} \begin{pmatrix} \mathbf{X}' \\ \mathbf{1} \end{pmatrix} \\ \mathbf{MX} &= \mathbf{DX} \qquad \qquad \text{en notant } \mathbf{D} = \begin{pmatrix} \mathbf{D}' & \mathbf{0} \\ \mathbf{0} & \rho \end{pmatrix} \end{split}$$

soit

Comme $\rho = \pm 1$ et $D' \in \mathcal{D}_{n-1}$, la matrice D est dans \mathcal{D}_n . De plus, puisque $X' \succ 0$, on a également $X \succ 0$.

Le couple
$$\begin{pmatrix} D' & 0 \\ 0 & \rho \end{pmatrix}$$
, $\begin{pmatrix} X' \\ 0 \end{pmatrix}$ est donc une solution pour M.

10 Calculons

$$\begin{split} {}^{t}\mathbf{M}_{1}\,\mathbf{M}_{1} &= \,{}^{t}(\,\mathbf{W} + \frac{1}{1-\rho}\mathbf{U}^{\,t}\mathbf{V})(\mathbf{W} + \frac{1}{1-\rho}\mathbf{U}^{\,t}\mathbf{V}) \\ &= (\,{}^{t}\mathbf{W} + \frac{1}{1-\rho}\mathbf{V}^{\,t}\mathbf{U})(\mathbf{W} + \frac{1}{1-\rho}\mathbf{U}^{\,t}\mathbf{V}) \\ {}^{t}\mathbf{M}_{1}\,\mathbf{M}_{1} &= \,{}^{t}\mathbf{W}\,\mathbf{W} + \frac{1}{1-\rho}(\,{}^{t}\mathbf{W}\,\mathbf{U}^{\,t}\mathbf{V} + \mathbf{V}^{\,t}\mathbf{U}\,\mathbf{W}) + \left(\frac{1}{1-\rho}\right)^{2}\mathbf{V}^{\,t}\mathbf{U}\,\mathbf{U}^{\,t}\mathbf{V} \end{split}$$

En utilisant les relations obtenues à la question 9.a,

 $^t \mathbf{W} \, \mathbf{W} + \mathbf{V}^{\,t} \mathbf{V} = \mathbf{I}_{n-1} \quad \text{et} \quad ^t \mathbf{W} \, \mathbf{U} + \rho \mathbf{V} = \, ^t \mathbf{U} \, \mathbf{W} + \rho^{\,t} \mathbf{V} = 0 \quad \text{et} \quad ^t \mathbf{U} \, \mathbf{U} + \rho^2 = 1$ on obtient

$${}^{t}M_{1}M_{1} = (I_{n-1} - V^{t}V) + \frac{1}{1-\rho}((-\rho V)^{t}V + V(-\rho^{t}V) + \left(\frac{1}{1-\rho}\right)^{2}V(1-\rho^{2})^{t}V$$

$$= I_{n-1} + \left(-1 - \frac{2\rho}{1-\rho} + \frac{1-\rho^{2}}{(1-\rho)^{2}}\right)V^{t}V$$

$$= I_{n-1} + \frac{-(1-\rho)^{2} - 2\rho(1-\rho) + 1 - \rho^{2}}{(1-\rho)^{2}}V^{t}V$$

 $^{t}\mathbf{M}_{1}\,\mathbf{M}_{1}=\mathbf{I}_{n-1}$

d'où

 M_1 est orthogonale.

De même,

$${}^{t}\mathbf{M}_{2}\mathbf{M}_{2} = {}^{t}\mathbf{W}\mathbf{W} - \frac{1}{1+\rho} ({}^{t}\mathbf{W}\mathbf{U}^{t}\mathbf{V} + \mathbf{V}^{t}\mathbf{U}\mathbf{W}) + \left(\frac{1}{1+\rho}\right)^{2}\mathbf{V}^{t}\mathbf{U}\mathbf{U}^{t}\mathbf{V}$$

$$= \mathbf{I}_{n-1} + \left(-1 + \frac{2\rho}{1+\rho} + \frac{1-\rho^{2}}{(1+\rho)^{2}}\right)\mathbf{V}^{t}\mathbf{V}$$

$$= \mathbf{I}_{n-1} + \frac{-(1+\rho)^{2} + 2\rho(1+\rho) + 1 - \rho^{2}}{(1+\rho)^{2}}\mathbf{V}^{t}\mathbf{V}$$

$${}^{t}\mathbf{M}_{2}\mathbf{M}_{2} = \mathbf{I}_{n-1}$$

d'où

 M_2 est orthogonale.

11.a En utilisant les égalités $M_1X_1 = D_1X_1$ et $M_2X_2 = D_2X_2$, on trouve

$${}^{t}X_{2}D_{2}D_{1}X_{1} = {}^{t}(D_{2}X_{2})D_{1}X_{1} = {}^{t}(M_{2}X_{2})M_{1}X_{1} = {}^{t}X_{2} {}^{t}M_{2}M_{1}X_{1}$$

Utilisons les égalités de la question 9.a:

$$\begin{split} {}^{t}\mathbf{M}_{2}\,\mathbf{M}_{1} &= \,{}^{t}(\,\mathbf{W} - \frac{1}{1+\rho}\mathbf{U}^{\,t}\mathbf{V})(\mathbf{W} + \frac{1}{1-\rho}\mathbf{U}^{\,t}\mathbf{V}) \\ &= \,{}^{t}\mathbf{W}\,\mathbf{W} + \frac{1}{1-\rho}\,{}^{t}\mathbf{W}\,\mathbf{U}^{\,t}\mathbf{V} - \frac{1}{1+\rho}\mathbf{V}^{\,t}\mathbf{U}\,\mathbf{W} - \frac{1}{(1-\rho)(1+\rho)}\mathbf{V}^{\,t}\mathbf{U}\,\mathbf{U}^{\,t}\mathbf{V} \\ &= (\mathbf{I}_{n-1} - \mathbf{V}^{\,t}\mathbf{V}) + \frac{1}{1-\rho}(-\rho\mathbf{V})^{\,t}\mathbf{V} - \frac{1}{1+\rho}\mathbf{V}(-\rho^{\,t}\mathbf{V}) - \frac{1}{1-\rho^{2}}\mathbf{V}(1-\rho^{2})^{\,t}\mathbf{V} \\ &= \mathbf{I}_{n-1} - \left(\rho\left(\frac{1}{1-\rho} - \frac{1}{1+\rho}\right) + \frac{1-\rho^{2}}{1-\rho^{2}}\right)\mathbf{V}^{\,t}\mathbf{V} \\ &= \mathbf{I}_{n-1} - \left(\rho\frac{1+\rho-1+\rho}{1-\rho^{2}} + \frac{1-\rho^{2}}{1-\rho^{2}}\right)\mathbf{V}^{\,t}\mathbf{V} \end{split}$$

En multipliant à gauche par tX_2 et à droite par X_1 et en posant $\sigma = \frac{1+\rho^2}{1-\rho^2}$,

$${}^{t}{\rm X}_{2}\,{\rm D}_{2}{\rm D}_{1}{\rm X}_{1}=\,{}^{t}{\rm X}_{2}\,{\rm X}_{1}-\sigma\,{}^{t}{\rm X}_{2}\,{\rm V}\,{}^{t}{\rm V}\,{\rm X}_{1}$$

Puisque tX_2V et tVX_1 sont des scalaires, ils commutent et on obtient également ${}^tX_2V={}^t({}^tX_2V)={}^tVX_2$. De plus, on a bien $\sigma\geqslant 0$ puisque $\rho^2<1$. On aboutit à

11.b Notons $\varepsilon_1, \ldots, \varepsilon_{n-1}$ les éléments diagonaux de D_1D_2 , $X_1 = {}^t(x_1, \ldots, x_{n-1})$ et $X_2 = {}^t(y_1, \ldots, y_{n-1})$:

$${}^{t}X_{2}X_{1} - {}^{t}X_{2}D_{1}D_{2}X_{1} = \sum_{i=1}^{n-1} y_{i}x_{i} - \sum_{i=1}^{n-1} y_{i}\varepsilon_{i}x_{i} = \sum_{i=1}^{n-1} (1 - \varepsilon_{i})x_{i}y_{i}$$

Comme $X_1 > 0$, $X_2 > 0$ et les ε_i valent 1 ou -1: tous les termes sont positifs ou nuls. Comme $D_1 \neq D_2$, au moins un ε_i vaut -1 et au moins un terme de la somme est non nul. On en déduit

$${}^{t}X_{2}X_{1} - {}^{t}X_{2}D_{1}D_{2}X_{1} = \sum_{i=1}^{n-1} (1 - \varepsilon_{i})x_{i}y_{i} > 0$$

Grâce au résultat de la question 11.a, on obtient

$$\sigma({}^{t}VX_{1})({}^{t}VX_{2}) > 0$$

En particulier, $^tV\,X_1$ et $^tV\,X_2$ sont non nuls. Comme $\sigma\geqslant 0,$ on a également $(\,^tV\,X_1)(\,^tV\,X_2)>0$

Ainsi,

 ${}^t \mathbf{V} \, \mathbf{X}_1$ et ${}^t \mathbf{V} \, \mathbf{X}_2$ sont non nuls et de même signe.

Utilisons maintenant les définitions de M_1 et M_2 :

$$\mathbf{M} \begin{pmatrix} \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{W} & \mathbf{U} \\ \mathbf{V} & \rho \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{W} \mathbf{X}_1 + \frac{1}{1-\rho} \mathbf{U}^t \mathbf{V} \mathbf{X}_1 \\ {}^t \mathbf{V} \mathbf{X}_1 + \frac{\rho}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{M}_1 \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{D}_1 \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix}$$
soit
$$\mathbf{M} \begin{pmatrix} \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{D}_1 & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 \\ \frac{1}{1-\rho} {}^t \mathbf{V} \mathbf{X}_1 \end{pmatrix}$$

$$\mathbf{D} \mathbf{e} \text{ même}, \qquad \mathbf{M} \begin{pmatrix} \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{W} & \mathbf{U} \\ {}^t \mathbf{V} & \rho \end{pmatrix} \begin{pmatrix} \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{W} \mathbf{X}_2 - \frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \\ {}^t \mathbf{V} \mathbf{X}_2 - \frac{\rho}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{M}_2 \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{D}_2 \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$
soit
$$\mathbf{M} \begin{pmatrix} \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$

Puisque D_1 et D_2 sont des matrices diagonales à coefficients diagonaux dans $\{-1, 1\}$, les matrices $\begin{pmatrix} D_1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} D_2 & 0 \\ 0 & -1 \end{pmatrix}$ sont dans \mathcal{D}_n . Si ${}^tVX_1 > 0$, puisque $X_1 \succ 0$ et $1 - \rho > 0$, on a ${}^t({}^tX_1, \frac{1}{1-\rho} {}^tVX_1) \succ 0$ et

Si
$${}^tVX_1 > 0$$
, le couple $\left(\begin{pmatrix} D_1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} X_1 \\ \frac{1}{1-\rho} {}^tVX_1 \end{pmatrix} \right)$ est une solution pour M.

Sinon, ${}^t\mathbf{V}\,\mathbf{X}_1$ étant non nul, il vérifie ${}^t\mathbf{V}\,\mathbf{X}_1<0$ et on obtient ${}^t\mathbf{V}_2\,\mathbf{X}_2<0$. On en déduit, puisque $\mathbf{X}_2\succ 0$ et $1+\rho>0$, que ${}^t({}^t\mathbf{X}_2,-\frac{1}{1+\rho}{}^t\mathbf{V}\,\mathbf{X}_2)\succ 0$.

Si
$${}^tV X_1 \leqslant 0$$
, le couple $\left(\begin{pmatrix} D_2 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} X_2 \\ \frac{-1}{1+\rho} {}^tV X_2 \end{pmatrix}\right)$ est une solution pour M.

11.c Comme $D_1 = D_2$, le produit D_1D_2 est une matrice diagonale dont les coefficients diagonaux valent 1^2 ou $(-1)^2$: c'est la matrice identité. L'égalité obtenue à la question 11.a devient

$${}^{t}X_{2}D_{2}D_{1}X_{1} = {}^{t}X_{2}X_{1} = {}^{t}X_{2}X_{1} - \sigma({}^{t}VX_{1})({}^{t}VX_{2})$$

On en tire $\sigma({}^{t}VX_{1})({}^{t}VX_{2}) = 0$. Comme $\sigma \neq 0$, il vient que

L'un des réels
$${}^t \mathbf{V} \, \mathbf{X}_1$$
 ou ${}^t \mathbf{V} \, \mathbf{X}_2$ est nul.

Supposons ${}^{t}VX_{1}=0$. Les calculs faits à la question précédente restent valables :

$$M\begin{pmatrix} X_1 \\ \frac{1}{1-\rho} {}^t V X_1 \end{pmatrix} = \begin{pmatrix} D_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ \frac{1}{1-\rho} {}^t V X_1 \end{pmatrix}$$

soit MX = DX avec $D = \begin{pmatrix} D_1 & 0 \\ 0 & 1 \end{pmatrix}$ et $X = \begin{pmatrix} X_1 \\ \frac{1}{1-a} {}^t V X_1 \end{pmatrix}$

On a toujours $D \in \mathcal{D}_n$ et, puisque $X_1 \succ 0$, $x_i > 0$ pour tout $i \in [1; n-1]$. De plus ${}^tV X_1 = 0$, si bien que $X \succcurlyeq 0$. Si ${}^tV X_2 = 0$. On obtient

$$\mathbf{M} \begin{pmatrix} \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & -1 \end{pmatrix} \begin{pmatrix} \mathbf{X}_2 \\ -\frac{1}{1+\rho} {}^t \mathbf{V} \mathbf{X}_2 \end{pmatrix}$$

soit MX' = D'X' avec $D' = \begin{pmatrix} D_2 & 0 \\ 0 & -1 \end{pmatrix}$ et $X' = \begin{pmatrix} X_2 \\ -\frac{1}{1+\rho} {}^t V X_2 \end{pmatrix}$

avec encore $D' \in \mathcal{D}_n$, $x_i' > 0$ pour tout $i \in [1; n-1]$ et $X' \geq 0$ (car $^tV X_2 = 0$). Dans tous les cas,

Il existe une matrice $D \in \mathcal{D}_n$ et un vecteur $X \succcurlyeq 0$ tel que $x_i > 0$ pour tout $i \in \llbracket 1 ; n-1 \rrbracket$ et satisfaisant MX = DX.

11.d On souhaite appliquer le résultat de la question précédente pour obtenir un vecteur $X' \succcurlyeq 0$ vérifiant $x_i' > 0$ pour tout $i \in [2; n]$. On peut donc essayer d'échanger les première et dernière coordonnées des vecteurs de \mathbb{R}^n . Introduisons pour cela

$$A = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 1 & 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

qui est la matrice de changement de base de la base canonique (e_1, \ldots, e_n) de \mathbb{R}^n à la base $(e_n, e_2, \ldots, e_{n-1}, e_1)$. Puisque les bases (e_1, \ldots, e_n) et $(e_n, e_2, \ldots, e_{n-1}, e_1)$ sont des bases orthonormées, la matrice A est orthogonale.

Pour montrer que A est orthogonale, on peut aussi dire que ses colonnes forment une base orthogonale de \mathbb{R}^n .

Puisque l'ensemble des matrices orthogonales de \mathcal{M}_n forme un sous-groupe de l'ensemble des matrices inversibles, la matrice $\mathbf{A}^{-1}\mathbf{M}\mathbf{A}$ est orthogonale et on peut lui appliquer le résultat de la question précédente. On obtient une matrice $\mathbf{D} \in \mathcal{D}_n$ et un vecteur $\mathbf{X} \succcurlyeq 0$ vérifiant $\mathbf{A}^{-1}\mathbf{M}\mathbf{A}\mathbf{X} = \mathbf{D}\mathbf{X}$ et $x_i > 0$ pour tout $i \in [1; n-1]$, en notant $\mathbf{X} = {}^t(x_1, \dots, x_n)$. On obtient alors

$$A^{-1}MAX = DX$$
$$= DA^{-1}AX$$
$$M(AX) = (ADA^{-1})(AX)$$

d'où

En notant $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de D et en interprétant A comme une matrice de passage, on obtient

$$ADA^{-1} = \begin{pmatrix} \lambda_n & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \lambda_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & \lambda_1 \end{pmatrix} \quad \text{et} \quad AX = \begin{pmatrix} x_n \\ x_2 \\ \vdots \\ x_{n-1} \\ x_1 \end{pmatrix}$$

On peut aussi faire les calculs.

Il ne reste plus qu'à poser $D' = ADA^{-1}$ et X' = AX. On a bien MX = DX, $D' \in \mathcal{D}_n$, $X' \geq 0$ et $x_i' > 0$ pour tout $i \in [2; n]$ en notant $X' = {}^t(x_1', \dots, x_n')$. Conclusion:

Il existe une matrice $D' \in \mathcal{D}_n$ et un vecteur $X' \succcurlyeq 0$ tel que $x_i' > 0$ pour tout $i \in [2; n]$ et MX' = D'X'.

On aurait aussi pu reprendre le raisonnement précédent depuis la question 9.a jusqu'à la 11.c mais en décomposant M en

$$\mathbf{M} = \begin{pmatrix} \rho' & {}^t\mathbf{V}' \\ \mathbf{U}' & \mathbf{W}' \end{pmatrix} \text{ avec } \rho' \in \mathbb{R}, \ \mathbf{U}', \mathbf{V}' \in \mathbb{R}^{n-1} \text{ et } \mathbf{W} \in \mathcal{M}_{n-1}$$

En suivant le raisonnement de la question 9.a, on montre que $|\rho'| < 1$. Si $|\rho| = 1$ on obtient directement une solution pour M (9.b). Sinon, on obtient soit une solution pour M (11.b), soit un couple (D', X') avec D' $\in \mathcal{D}_n$ et X' \geq 0 tel que $x_i' > 0$ pour tout $i \in [2; n]$ et MX' = D'X' (11.c). Comme une solution (D, X) pour M vérifie aussi ces quatre propriétés, on conclut de la même manière que ci-dessus.

12.a À la question 11 on a obtenu soit une solution pour M, auquel cas il n'y a rien \overline{a} faire, soit deux couples (D, X) et (D', X') vérifiant

$$D \in \mathcal{D}_n \qquad \text{et} \qquad D' \in \mathcal{D}_n$$

$$X \succcurlyeq 0 \qquad \text{et} \qquad X' \succcurlyeq 0$$

$$x_i > 0 \text{ pour tout } i \in \llbracket 1 \, ; \, n-1 \rrbracket \qquad \text{et} \qquad x_i' > 0 \text{ pour tout } i \in \llbracket 2 \, ; \, n \rrbracket$$

$$MX = DX \qquad \text{et} \qquad MX' = D'X'$$

Supposons tout d'abord D = D'. Alors, en posant Y = X + X', on obtient

$$MY = M(X + X') = MX + MX' = DX + D'X' = D(X + X') = DY$$

Les coefficients de Y sont les $x_i + x'_i$ qui vérifient

- $x_1 > 0$ et $x'_1 \ge 0$ donc $x_1 + x'_1 > 0$;
- $x_i > 0$ et $x'_i > 0$ donc $x_i + x'_i > 0$ pour tout $i \in [2; n-1]$;
- $x_n \ge 0$ et $x'_n > 0$ donc $x_n + x'_n > 0$.

On en déduit que $Y \succ 0$. Comme $D \in \mathcal{D}_n$, le couple (D, Y) est une solution pour M. Dans le cas général, construisons deux nouveaux couples $(\widetilde{D}, \widetilde{X})$ et $(\widetilde{D}', \widetilde{X}')$ vérifiant les mêmes propriétés que (D, X) et (D', X') ainsi que $\widetilde{D} = \widetilde{D}'$, $\widetilde{X} = X$ et $\widetilde{X}' = X'$. Notons $\lambda_1, \ldots, \lambda_n$ les éléments diagonaux de D et $\lambda'_1, \ldots, \lambda'_n$ ceux de D'. Démontrons tout d'abord que $\lambda_i = \lambda'_i$ pour tout $i \in [2; n]$. On a

$$t(MX')MX = {}^tX'({}^tMM)X$$

$$= {}^tX'X \qquad \text{car M est orthogonale}$$

$$= \sum_{i=1}^n x_i x_i'$$

$$\text{En outre,} \qquad {}^t(MX')MX = {}^tX'({}^tD'D)X \qquad \text{car } MX = DX \text{ et } MX' = D'X'$$

$$= \sum_{i=1}^n \lambda_i \lambda_i' x_i x_i'$$

$$= \sum_{i=1}^n (1 - \lambda_i' \lambda_i)(x_i' x_i) = 0 \qquad (\star) \qquad \text{en faisant la différence.}$$

Enfin.

Tous les termes de cette somme étant positifs, ils sont tous nuls. De plus, pour un entier $i \in [2; n-1]$, $x_i'x_i > 0$, d'où $1 - \lambda_i'\lambda_i = 0$ ie $\lambda_i'\lambda_i = 1$ et $\lambda_i' = \lambda_i$ car ils valent 1 ou -1. Posons

$$\widetilde{\mathbf{D}} = \widetilde{\mathbf{D}}' = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \lambda_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & \lambda'_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda'_2 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \lambda'_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & \lambda'_n \end{pmatrix}$$

si bien que

$$\widetilde{\mathbf{D}}\mathbf{X} = \begin{pmatrix} \lambda_1 x_1 \\ \vdots \\ \lambda_{n-1} x_{n-1} \\ \lambda'_n x_n \end{pmatrix} \quad \text{et} \quad \widetilde{\mathbf{D}}'\mathbf{X}' = \begin{pmatrix} \lambda_1 x'_1 \\ \lambda'_2 x'_2 \\ \vdots \\ \lambda'_n x'_n \end{pmatrix}$$

soit

Si $x_n = 0$, on a $\widetilde{D}'X = DX = MX$. Si $x_n \neq 0$, on obtient $x_n x_n' \neq 0$. D'après l'égalité (\star) , $1 - \lambda_n' \lambda_n = 0$ ie $\lambda_n' = \lambda_n$ et donc à nouveau $\widetilde{D}X = DX = MX$.

De même, si $x_1' = 0$ alors $\widetilde{D}'X' = D'X' = MX'$ et si $x_1' \neq 0$ alors $\lambda_1 = \lambda_1'$ et $\widetilde{D}'X' = D'X' = MX'$ aussi.

On trouve ainsi deux couples (\widetilde{D}, X) et (\widetilde{D}', X') vérifiant les mêmes hypothèses que (D, X) et (D', X') ainsi que $\widetilde{D} = \widetilde{D}'$. D'après ce qui précède,

Le couple
$$(\widetilde{D}, X + X')$$
 est une solution pour M.

12.b On a montré par récurrence que la propriété (\mathcal{P}_n) est vraie pour tout $n \ge 1$. L'initialisation a été faite à la question 8 et l'hérédité lors des questions 9 à 12.a.

La propriété
$$(\mathcal{P}_n)$$
 est vraie pour tout $n \ge 1$.

13.a Soit λ une valeur propre réelle de N et X un vecteur propre réel associé. D'une part,

et d'autre part,
$$\begin{aligned} ^t \mathbf{X}(\mathbf{N}\mathbf{X}) &= \ ^t \mathbf{X} \ \lambda \mathbf{X} = \lambda^t \mathbf{X} \ \mathbf{X} \\ ^t \mathbf{X}(\mathbf{N}\mathbf{X}) &= (\ ^t \mathbf{X} \ \mathbf{N}) \mathbf{X} \\ &= \ ^t (\ ^t \mathbf{N} \ \mathbf{X}) \mathbf{X} \\ &= \ ^t (-\mathbf{N}\mathbf{X}) \mathbf{X} \end{aligned} \qquad \text{car N est antisymétrique}$$
 soit
$$\lambda^t \mathbf{X} \mathbf{X} = -\lambda^t \mathbf{X} \ \mathbf{X}$$
 soit
$$\lambda^t \mathbf{X} \mathbf{X} = 0$$

Comme X est un vecteur propre, il n'est pas nul et le produit scalaire tXX non plus. On en déduit que $\lambda=0$.

Toute valeur propre réelle de N est nulle.

En particulier, -1 n'est pas valeur propre de N et la matrice $\mathcal{N}-(-1)\mathcal{I}_n$ est inversible

$$N + I_n$$
 est inversible.

13.b Comme N est antisymétrique, on a ${}^tN = -N$ ainsi que ${}^t(I_n + N) = I_n - N$ et ${}^t(I_n - N) = I_n + N$. De plus, la transposée de l'inverse d'une matrice (inversible) étant égale à l'inverse de sa transposée, ${}^t((I_n + N)^{-1}) = (I_n - N)^{-1}$. Enfin, puisque $I_n + N$ et $I_n - N$ commutent,

$$M^{t}M = (I_{n} + N)^{-1}(I_{n} - N)^{t}[(I_{n} + N)^{-1}(I_{n} - N)]$$

$$= (I_{n} + N)^{-1}(I_{n} - N)^{t}(I_{n} - N)^{t}[(I_{n} + N)^{-1}]$$

$$= (I_{n} + N)^{-1}(I_{n} - N)(I_{n} + N)(I_{n} - N)^{-1}$$

$$= (I_{n} + N)^{-1}(I_{n} + N)(I_{n} - N)(I_{n} - N)^{-1}$$

$$M^{t}M = I_{n}$$

La matrice M est orthogonale.

On aurait aussi pu calculer le produit tMM mais il aurait alors fallu justifier que $(I_n - N)^{-1}$ et $(I_n + N)^{-1}$ commutent. Pour cela on peut montrer que si une matrice A commute avec une matrice inversible B, alors elle commute avec B^{-1} ; en effet, $AB^{-1} = B^{-1}BAB^{-1} = B^{-1}ABB^{-1} = B^{-1}A$.

13.c Notons $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de D et $X = {}^t(x_1, \ldots, x_n)$. Comme Y = X + DX,

$$Y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \lambda_1 x_1 \\ \vdots \\ \lambda_n x_n \end{pmatrix} = \begin{pmatrix} (1+\lambda_1)x_1 \\ \vdots \\ (1+\lambda_n)x_n \end{pmatrix}$$

Puisque $D \in \mathcal{D}_n$, les λ_i valent 1 ou -1 et les $1 + \lambda_i$ valent 2 ou 0. Puisque $X \succ 0$, les x_i sont strictement positifs. Ainsi $(1 + \lambda_i)x_i \ge 0$ pour tout $i \in [1; n]$, c'est-à-dire

$$Y \succcurlyeq 0$$

Montrons que NY \geq 0. DX = MX car (D, X) est une solution pour M $= (I_n + N)^{-1}(I_n - N)X$ soit $(I_n + N)DX = (I_n - N)X$

soit $(I_n + N)DX = (I_n - N)X$ et DX + NDX = X - NX

DX + NDX = X - NX

et enfin X - DX = NY

Comme précédemment, les coefficients de X - DX sont les $(1 - \lambda_i)x_i$ et sont donc positifs ou nuls. On en déduit que

$$NY \succcurlyeq 0$$

Enfin,
$$Y + NY = (X + DX) + (X - DX) = 2X$$

et comme $X \succ 0$, $Y + NY \succ 0$

14 Considérons la matrice N définie par blocs par

$$\mathbf{N} = \begin{pmatrix} 0 & \mathbf{P} \\ -^{t} \mathbf{P} & 0 \end{pmatrix}$$

Cette matrice est bien antisymétrique car

$${}^{t}N = \begin{pmatrix} 0 & {}^{t}(-{}^{t}P) \\ {}^{t}P & 0 \end{pmatrix} = \begin{pmatrix} 0 & -P \\ {}^{t}P & 0 \end{pmatrix} = -N$$

On peut appliquer successivement les résultats des questions 13.a, 13.b et 13.c à N: il existe un vecteur Z satisfaisant $Z \geq 0$, $NZ \geq 0$ et Z + NZ > 0. Puisque P appartient à \mathcal{M}_n , la matrice N est dans \mathcal{M}_{2n} et Z appartient à \mathbb{R}^{2n} . Notons Y et X les vecteurs de \mathbb{R}^n vérifiant ${}^tZ = {}^t({}^tY, {}^tX)$. On obtient

$$\mathbf{Z} = \begin{pmatrix} \mathbf{Y} \\ \mathbf{X} \end{pmatrix}, \quad \mathbf{NZ} = \begin{pmatrix} \mathbf{0} & \mathbf{P} \\ -{}^t\mathbf{P} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{Y} \\ \mathbf{X} \end{pmatrix} = \begin{pmatrix} \mathbf{PX} \\ -{}^t\mathbf{P} & \mathbf{Y} \end{pmatrix} \quad \text{et} \quad \mathbf{Z} + \mathbf{NZ} = \begin{pmatrix} \mathbf{Y} + \mathbf{PX} \\ \mathbf{X} - {}^t\mathbf{P} & \mathbf{Y} \end{pmatrix}$$

Comme $Z \geq 0$ et $NZ \geq 0$, on trouve, entre autres, $Y \geq 0$ et $-{}^tP Y \geq 0$ c'est-à-dire $0 \geq {}^tP Y$. Ou bien $Y \neq 0$ et les inégalités larges $0 \geq {}^tP Y$ et $Y \geq 0$ admettent une solution non nulle dans \mathbb{R}^n , ou bien Y = 0 et la condition Z + NZ > 0 donne PX > 0 et X > 0. Ainsi,

Au moins l'une des deux propriétés suivantes est vraie :

- soit les inégalités larges $0 \succcurlyeq {}^t P Y$ et $Y \succcurlyeq 0$ admettent une solution non nulle dans \mathbb{R}^n ;
- soit les inégalités strictes PX $\succ 0$ et X $\succ 0$ admettent une solution dans \mathbb{R}^n .

15 On a montré à la troisième partie que si $P \in \mathcal{M}_n^+$ et $X \in \mathbb{R}^n$ vérifient $0 \geq PX$ et $X \geq 0$, alors X = 0. En appliquant ceci à la matrice tP , qui est bien dans \mathcal{M}_n^+ d'après la question 1.c, on constate que la première propriété de l'alternative établie à la question 14 est fausse. La deuxième est donc vraie:

Les inégalités strictes $PX \succ 0$ et $X \succ 0$ admettent une solution dans \mathbb{R}^n .