et

III. ÉTUDE D'UN ENDOMORPHISME SUR UN ESPACE PRÉHILBERTIEN

14 Commençons par dériver la fonction w qui est de classe \mathscr{C}^{∞} sur \mathbb{R} comme produit de fonctions \mathscr{C}^{∞} : pour tout $x \in \mathbb{R}$,

$$w'(x) = -2x e^{-x^2}$$

$$w''(x) = (-2 + 4x^2) e^{-x^2}$$

$$w'''(x) = (8x + 4x - 8x^3) e^{-x^2} = (12x - 8x^3) e^{-x^2}$$

Par définition de H_n , on obtient alors

$$\forall x \in \mathbb{R}$$
 $H_1(x) = 2x$, $H_2(x) = 4x^2 - 2$ et $H_3(x) = 8x^3 - 12x$

15 Soit $n \in \mathbb{N}$. Dérivons l'égalité qui définit H_n : pour tout $x \in \mathbb{R}$,

$${\rm H}_{n}{'}(x) = (-1)^{n} \Big({\rm e}^{x^{2}} w^{(n+1)}(x) + 2x \, {\rm e}^{x^{2}} w^{(n)}(x) \Big) = -{\rm H}_{n+1}(x) + 2x \, {\rm H}_{n}(x)$$
 d'où
$$\boxed{ \forall x \in \mathbb{R} \quad \forall n \in \mathbb{N} \qquad {\rm H}_{n+1}(x) = 2x \, {\rm H}_{n}(x) - {\rm H}'_{n}(x) }$$

16 Montrons par récurrence que la propriété

 $\mathscr{P}(n)\colon \quad \text{\langle H_n$ est un polynôme de degré n de même parité que n \rangle}$ est vraie pour tout $n\in\mathbb{N}.$

- $\mathcal{P}(0)$ est vraie car $H_0 = 1$.
- $\overline{\mathscr{P}(n)} \Longrightarrow \mathscr{P}(n+1)$: soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie. Alors $2X H_n$ est un polynôme de degré n+1 et H_n' est un polynôme de degré n-1, donc H_{n+1} est bien un polynôme de degré n+1 par la relation établie à la question 15. De plus, comme H_n est de même parité que n, on a l'égalité $H_n(-X) = (-1)^n H_n(X)$, qui donne $2(-X) H_n(-X) = 2(-1)^{n+1} X H_n(X)$ en multipliant par 2(-X), ou encore $-H_n'(-X) = (-1)^n H_n'(X)$ en dérivant. Les polynômes $2X H_n$ et H_n' sont donc de même parité que n+1, donc H_{n+1} aussi par somme. Ainsi, $\mathscr{P}(n+1)$ est vraie.
- <u>Conclusion</u>:

Pour tout $n \in \mathbb{N}$, H_n est un polynôme de degré n de même parité que n.

17 Montrons par récurrence que la propriété

$$\mathscr{P}(n)$$
: « H_n a pour coefficient dominant 2^n »

est vraie pour tout $n \in \mathbb{N}$.

- $\mathcal{P}(0)$ est vraie car $H_0 = 1$.
- $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie. Puisque $2X H_n$ est un polynôme de degré n+1 et H'_n est de degré n-1, le coefficient dominant de $H_{n+1} = 2X H_n + H_{n-1}$ est celui de $2X H_n$. Par hypothèse de récurrence, c'est donc $2 \cdot 2^n = 2^{n+1}$ et $\mathscr{P}(n+1)$ est vraie.
- Conclusion:

Pour tout $n \in \mathbb{N}$, le coefficient dominant de H_n est 2^n .

- 18 Montrons que E est un sous-espace vectoriel de $\mathscr{C}^0(\mathbb{R},\mathbb{R})$ contenant $\mathbb{R}[X]$.
 - <u>Présence du neutre</u>: la fonction $x \mapsto 0 \times e^{-x^2}$ étant intégrable sur \mathbb{R} , la fonction nulle appartient à E.
 - Stabilité par combinaison linéaire : soient $f, g \in E$ et $\lambda \in \mathbb{R}$. La fonction $f + \lambda g$ est continue sur \mathbb{R} et, en utilisant l'inégalité $2ab \leq a^2 + b^2$, il vient

$$(f + \lambda g)^2 = f^2 + \lambda^2 g^2 + 2\lambda f g \leqslant f^2 + \lambda^2 g^2 + f^2 + \lambda^2 g^2$$
 puis
$$\int_{-\infty}^{+\infty} ((f + \lambda g)(x))^2 e^{-x^2} dx \leqslant 2 \int_{-\infty}^{+\infty} f(x)^2 e^{-x^2} dx + 2 \lambda^2 \int_{-\infty}^{+\infty} g(x)^2 e^{-x^2} dx$$

où les deux intégrales à droite convergent car $f,g\in E$. Donc $f+\lambda g\in E$.

• Inclusion de $\mathbb{R}[X]$: pour $P \in \mathbb{R}[X]$, par croissance comparée,

$$P(x)^2 e^{-x^2} = \underset{x \to \pm \infty}{\text{o}} \left(\frac{1}{x^2}\right)$$

En intégrant le terme de droite, on obtient une intégrale de Riemann convergente. D'après le théorème de comparaison pour les fonctions positives,

$$\int_{-\infty}^{+\infty} P(x)^2 e^{-x^2} dx$$

converge, donc P \in E, et par suite $\mathbb{R}[X] \subset$ E. Par conséquent,

L'espace E est un \mathbb{R} -espace vectoriel contenant $\mathbb{R}[X]$.

- **19** Montrons que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
 - Bonne définition: pour $f, g \in E$,

$$\forall x \in \mathbb{R}$$
 $|f(x) g(x)| \leqslant \frac{1}{2} (f(x)^2 + g(x)^2)$

et en multipliant le terme de droite par e^{-x^2} , on obtient la somme de deux intégrales convergentes puisque $f,g\in E$. Ainsi, d'après le théorème de comparaison, $x\mapsto f(x)\,g(x)\,e^{-x^2}$ est intégrable sur \mathbb{R} , et $\langle f,g\rangle\in \mathbb{R}$ est bien défini. Ceci établit également que $\langle\cdot\,,\,\cdot\rangle$ est à valeurs dans \mathbb{R} .

- <u>Bilinéarité</u>: la linéarité du produit réel et de l'intégrale entraı̂ne la bilinéarité de $\langle \cdot, \cdot \rangle$.
- Symétrie: par commutativité du produit sur \mathbb{R} , $\langle \cdot, \cdot \rangle$ est symétrique.
- Définie positivité: pour $f \in E$, par positivité de l'intégrale,

$$\langle f, f \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(x)^2 e^{-x^2} dx \geqslant 0$$

De plus, f^2 étant continue et positive, $\langle f, f \rangle = 0$ si et seulement si pour tout $x \in \mathbb{R}$, $f(x)^2 e^{-x^2} = 0$, c'est-à-dire f = 0 car e^{-x^2} est non nul pour tout $x \in \mathbb{R}$.

Ainsi, L'application $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.

20 Soient $n \in \mathbb{N}^*$ et $P \in \mathbb{R}[X]$. Calculons

$$\langle \mathbf{P}', \mathbf{H}_{n-1} \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \mathbf{P}'(x) (-1)^{n-1} e^{x^2} w^{(n-1)}(x) e^{-x^2} dx$$

$$= \frac{(-1)^{n-1}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \mathbf{P}'(x) w^{(n-1)}(x) dx$$

$$\langle \mathbf{P}', \mathbf{H}_{n-1} \rangle = \frac{(-1)^{n-1}}{\sqrt{\pi}} \left(\left[\mathbf{P}(x) w^{(n-1)}(x) \right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \mathbf{P}(x) w^{(n)}(x) dx \right)$$

Cette intégration par parties est légitime, car les fonctions $x \mapsto P(x)$ et $x \mapsto w^{(n-1)}(x)$ sont \mathscr{C}^1 sur \mathbb{R} , et $P(x) w^{(n-1)}(x) = (-1)^{n-1} P(x) H_{n-1}(x) e^{-x^2}$ qui est de limite nulle en $\pm \infty$ par croissance comparée. Ainsi,

$$\langle P', H_{n-1} \rangle = \frac{(-1)^n}{\sqrt{\pi}} \int_{-\infty}^{+\infty} P(x) w^{(n)}(x) dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} P(x) H_n(x) e^{-x^2} dx$$

c'est-à-dire

$$\forall n \in \mathbb{N}^* \quad \forall P \in \mathbb{R}[X] \qquad \langle P', H_{n-1} \rangle = \langle P, H_n \rangle$$

21 Soient $n \in \mathbb{N}^*$ et $P \in \mathbb{R}_{n-1}[X]$. En itérant l'égalité obtenue à la question 20, on obtient par récurrence sur k que pour $k \in [0; n]$, $\langle P, H_n \rangle = \langle P^{(k)}, H_{n-k} \rangle$. En particulier, pour k = n on a $P^{(n)} = 0$, d'où

22 Pour i < j des entiers naturels, l'égalité précédente donne $\langle \mathbf{H}_i, \mathbf{H}_j \rangle = 0$, puisque on a $\mathbf{H}_i \in \mathbb{R}_i[\mathbf{X}] \subset \mathbb{R}_{j-1}[\mathbf{X}]$ d'après la question 16. Pour $n \in \mathbb{N}$, la famille $(\mathbf{H}_0, \dots, \mathbf{H}_n)$ est donc orthogonale et les \mathbf{H}_i sont tous non nuls: c'est donc une famille libre. De plus, elle est de cardinal $n+1=\dim \mathbb{R}_n[\mathbf{X}]$. Finalement,

Pour tout $n \in \mathbb{N}$, la famille (H_0, \dots, H_n) est une base orthogonale de $\mathbb{R}_n[X]$.

23 Par définition de la norme euclidienne,

$$\|\mathbf{H}_n\|^2 = \langle \mathbf{H}_n, \mathbf{H}_n \rangle$$

D'après l'égalité obtenue à la question 21, en prenant k=n, on en déduit

$$\|\mathbf{H}_n\|^2 = \langle \mathbf{H}_n^{(n)}, \mathbf{H}_0 \rangle$$

24 Le polynôme H_n est de degré n d'après la question 16 et de coefficient dominant 2^n d'après la question 17. Or, la dérivée n-ième de X^k est 0 pour tout k < n et n! pour k = n, d'où $H_n^{(n)} = 2^n n!$. Ainsi, d'après la question précédente,

$$\|\mathbf{H}_n\|^2 = \langle \mathbf{H}_n^{(n)}, \mathbf{H}_0 \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} 2^n n! e^{-x^2} dx = 2^n n! \frac{\mathbf{J}}{\sqrt{\pi}} = 2^n n!$$

par le résultat de la question 8. Donc

$$\|\mathbf{H}_n\| = \sqrt{2^n n!}$$

25 L'application u est bien définie de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$. Pour $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$,

$$u(P + \lambda Q) = -P'' - \lambda Q'' + 2XP' + 2\lambda XQ' + P + \lambda Q = u(P) + \lambda u(Q)$$

donc

L'application u est un endomorphisme de $\mathbb{R}[X]$.

De plus, pour $n \in \mathbb{N}$, si $P \in \mathbb{R}_n[X]$, alors $\deg(-P'') \leqslant \deg P - 2 \leqslant n - 2$ et

$$\deg(2 \times P') \leqslant 1 + (\deg P - 1) \leqslant n$$

Puisque u(P) est la somme de ces deux polynômes et de P, on en déduit $u(P) \in \mathbb{R}_n[X]$. Donc

Pour $n \in \mathbb{N}$, le sous-espace $\mathbb{R}_n[X]$ est stable par u.

26 Pour $P \in \mathbb{R}[X]$, on a

$$v \circ w(P) = v(P') = 2X P' - P'' = u(P) - P$$

 $w \circ v(P) = w(2X P - P') = 2P + 2X P' - P'' = P + u(P)$

Donc

et

$$v \circ w = u - \operatorname{Id}$$
 et $w \circ v = u + \operatorname{Id}$

27 On déduit du résultat précédent que $u = v \circ w + \text{Id}$, ce qui entraîne

$$u \circ v = v \circ w \circ v + v = v \circ (u + \operatorname{Id}) + v = v \circ u + 2v$$

d'où

$$u \circ v - v \circ u = 2v$$

28 Soient $\lambda \in \mathbb{R}$ et $P \in \mathbb{R}[X]$ tels que $u(P) = \lambda P$. Alors, d'après la question 27,

$$u(v(P)) = v(u(P)) + 2v(P)$$
$$= v(\lambda P) + 2v(P)$$
$$u(v(P)) = (\lambda + 2) v(P)$$

29 Montrons par récurrence que la propriété

$$\mathscr{P}(k)$$
: $u(\mathbf{H}_k) = (2k+1)\,\mathbf{H}_k$

est vraie pour tout $k \in \mathbb{N}$.

- $\mathcal{P}(0)$: $H_0 = 1$ et $u(1) = -0 + 2X \cdot 0 + 1 = 1$, donc $\mathcal{P}(0)$ est vraie.
- $\mathscr{P}(k) \Longrightarrow \mathscr{P}(k+1)$: soit $k \in \mathbb{N}$. Supposons que $\mathscr{P}(k)$ est vraie. Alors, d'après la question 15, $H_{k+1} = 2X H_k H'_k = v(H_k)$, d'où, en utilisant la question 28

$$u(\mathbf{H}_{k+1}) = u(v(\mathbf{H}_k))$$

= $(2k + 1 + 2) v(\mathbf{H}_k)$
$$u(\mathbf{H}_{k+1}) = (2(k+1) + 1) \mathbf{H}_{k+1}$$

On obtient bien que $\mathcal{P}(k+1)$ est vraie.

• Conclusion:

Pour tout $k \in \mathbb{N}$, H_k est un vecteur propre de u associé à la valeur propre 2k+1.

30 On sait, d'après la question 22, que $(H_0, ..., H_n)$ forme une base de $\mathbb{R}_n[X]$. Cette base est constituée de vecteurs propres de u d'après la question précédente, donc de vecteurs propres de u_n . Ainsi,

Pour tout $n \in \mathbb{N}$, l'endomorphisme u_n est diagonalisable sur \mathbb{R} .

 $\boxed{\bf 31}$ Soient P, Q $\in \mathbb{R}[X]$. On a

$$\begin{split} \langle \mathbf{P}' \,,\, \mathbf{Q}' \rangle &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \mathbf{P}'(x) \,\mathbf{Q}'(x) \,\mathrm{e}^{-x^2} \,\mathrm{d}x \\ &= \frac{1}{\sqrt{\pi}} \left[\mathbf{Q}(x) \,\mathbf{P}'(x) \,\mathrm{e}^{-x^2} \right]_{-\infty}^{+\infty} - \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \mathbf{Q}(x) (\mathbf{P}''(x) - 2x \,\mathbf{P}'(x)) \,\mathrm{e}^{-x^2} \,\mathrm{d}x \end{split}$$

où l'intégration par parties est justifiée par le caractère \mathscr{C}^1 de toutes les fonctions considérées, et puisque par croissance comparée,

$$\begin{aligned} \mathbf{Q}(x)\,\mathbf{P}'(x)\,\mathbf{e}^{-x^2} &\xrightarrow[x\to\pm\infty]{} 0 \\ \\ \text{Ainsi,} & \langle \mathbf{P}'\,,\,\mathbf{Q}'\rangle = \langle -\mathbf{P}''+2\,\mathbf{X}\,\mathbf{P}'\,,\,\mathbf{Q}\rangle \\ \\ \text{d'où} & \forall\,\mathbf{P},\mathbf{Q}\in\mathbb{R}[\mathbf{X}] & \langle \mathbf{P}'\,,\,\mathbf{Q}'\rangle = \langle u(\mathbf{P})\,,\,\mathbf{Q}\rangle - \langle \mathbf{P}\,,\,\mathbf{Q}\rangle \end{aligned}$$

32 Pour P, Q $\in \mathbb{R}_n[X]$, d'après le résultat précédent,

$$\begin{split} \langle u(\mathbf{P}) \,,\, \mathbf{Q} \rangle &= \langle \mathbf{P}' \,,\, \mathbf{Q}' \rangle + \langle \mathbf{P} \,,\, \mathbf{Q} \rangle \\ &= \langle \mathbf{Q}' \,,\, \mathbf{P}' \rangle + \langle \mathbf{Q} \,,\, \mathbf{P} \rangle \\ \langle u(\mathbf{P}) \,,\, \mathbf{Q} \rangle &= \langle \mathbf{P} \,,\, u(\mathbf{Q}) \rangle \end{split} \qquad \text{(par symétrie)}$$

Par conséquent, $\langle u_n(P), Q \rangle = \langle P, u_n(Q) \rangle$ pour tous $P, Q \in \mathbb{R}_n[X]$, c'est-à-dire que

L'endomorphisme u_n est autoadjoint.

|33| D'après le résultat précédent, on peut appliquer le théorème spectral à u_n . Ainsi,

L'endomorphisme u_n est diagonalisable sur \mathbb{R} dans une base orthonormée de $\mathbb{R}_n[X]$ formée de vecteurs propres de u_n .

34 Puisque $(H_0, ..., H_n)$ forme une base propre orthogonale pour u_n d'après la question 30, il suffit de normaliser chaque vecteur. D'après la question 24, $||H_k|| = \sqrt{2^k k!}$ pour tout $k \in [0; n]$. Par conséquent,

La base $(H_k/\sqrt{2^k \, k \, !})_{0 \leqslant k \leqslant n}$ est une base orthonormée de $\mathbb{R}_n[X]$ constituée de vecteurs propres de u_n .

IV. UNE FAMILLE TOTALE

L'énoncé comporte une coquille inoffensive : au lieu de « $\xi \in E$ », il faut lire « $f \in E$ ».

Comme suggéré dans l'énoncé, écrivons

$$\forall x \in \mathbb{R} \quad \forall \xi \in \mathbb{R} \qquad f(x) e^{-i x \xi} e^{-x^2} = f(x) e^{-x^2/2} e^{-i x \xi} e^{-x^2/2}$$

d'où, par l'inégalité $ab \leq (a^2 + b^2)/2$ et l'inégalité triangulaire,

$$\left| f(x) e^{-i x \xi} e^{-x^{2}} \right| \leq \frac{1}{2} \left(f(x)^{2} e^{-x^{2}} + \left| e^{-i x \xi} \right|^{2} e^{-x^{2}} \right)$$

$$\leq \frac{1}{2} \left(f(x)^{2} e^{-x^{2}} + e^{-x^{2}} \right)$$

Puisque $f \in \mathcal{E}$, et d'après la question 8, les intégrales

$$\int_{-\infty}^{+\infty} f(x)^2 e^{-x^2} dx \qquad \text{et} \qquad \int_{-\infty}^{+\infty} e^{-x^2} dx$$

convergent. Ainsi, l'intégrale

$$\int_{-\infty}^{+\infty} \left| f(x) e^{-i x \xi} e^{-x^2} \right| dx$$

converge également. En conclusion,

Pour tous $\xi \in \mathbb{R}$ et $f \in \mathcal{E}$, la fonction $x \mapsto f(x) e^{-ix\xi} e^{-x^2}$ est intégrable sur \mathbb{R} .

36 Par croissance comparée, pour tout $p \in \mathbb{N}$,

$$x^{2p} e^{-x^2} = \underset{x \to \pm \infty}{\text{o}} \left(\frac{1}{x^2}\right)$$

Comme précédemment, par comparaison avec une intégrale de Riemann convergente en $+\infty$ et en $-\infty$,

Pour tout $p \in \mathbb{N}$, la fonction $x \mapsto x^{2p} e^{-x^2}$ est intégrable sur \mathbb{R} .

De plus, si $p \in \mathbb{N}$,

$$M_{p+1} = \int_{-\infty}^{+\infty} x^{2p+1} x e^{-x^2} dx$$
$$= \left[x^{2p+1} \left(-\frac{1}{2} e^{-x^2} \right) \right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} (2p+1) x^{2p} \left(-\frac{1}{2} e^{-x^2} \right) dx$$

en intégrant par parties. Comme précédemment, l'intégration par parties est justifiée par le fait que le terme entre crochets tend vers 0 en $\pm \infty$ par croissance comparée. Par conséquent,

$$\forall p \in \mathbb{N} \qquad \mathcal{M}_{p+1} = \left(p + \frac{1}{2}\right) \mathcal{M}_p$$

De plus, d'après la question 8,

$$M_0 = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

On en déduit par récurrence que pour tout $p \in \mathbb{N}$,

$$M_{p} = \sqrt{\pi} \prod_{k=0}^{p-1} \left(k + \frac{1}{2}\right)$$

$$= \sqrt{\pi} \prod_{k=0}^{p-1} \frac{2k+1}{2}$$

$$= \sqrt{\pi} \prod_{k=0}^{p-1} \frac{(2k+1)(2k+2)}{4(k+1)}$$

$$\forall p \in \mathbb{N} \qquad M_{p} = \sqrt{\pi} \frac{(2p)!}{4^{p}p!}$$

d'où

37 Développons $e^{-ix\xi}$ en série entière dans l'intégrale: pour tout $\xi \in \mathbb{R}$,

$$\mathscr{F}(f)(\xi) = \int_{-\infty}^{+\infty} f(x) \left(\sum_{n=0}^{+\infty} \frac{(-\mathrm{i})^n \xi^n x^n}{n!} \right) e^{-x^2} dx$$

donc

$$\forall \xi \in \mathbb{R} \qquad \mathscr{F}(f)(\xi) = \int_{-\infty}^{+\infty} \sum_{n=0}^{+\infty} f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} dx$$

38 Soit $\xi \in \mathbb{R}$. Vérifions les hypothèses du théorème d'intégration terme à terme.

• La fonction

$$x \longmapsto \sum_{n=0}^{+\infty} f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} = f(x) e^{-i x \xi} e^{-x^2}$$

est continue sur $\mathbb R$ par produit de fonctions continues.

• Pour tout $n \in \mathbb{N}$, la fonction

$$x \longmapsto f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!}$$

est continue et intégrable sur \mathbb{R} , puisque pour tout $x \in \mathbb{R}$

$$\left| f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \right| = \frac{|\xi|^n}{n!} \left| f(x) e^{-x^2/2} x^n e^{-x^2/2} \right|$$

$$\leq \frac{|\xi|^n}{2n!} \left(f(x)^2 e^{-x^2} + x^{2n} e^{-x^2} \right)$$

et nous avons déjà montré que les deux termes de droite sont intégrables sur \mathbb{R} .

• Enfin, pour tout $n \in \mathbb{N}$,

$$\int_{-\infty}^{+\infty} \left| f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \right| dx = \frac{|\xi|^n}{n!} \int_{-\infty}^{+\infty} \left| f(x) e^{-x^2/2} \times x^n e^{-x^2/2} \right| dx$$

$$\leq \frac{|\xi|^n}{n!} \sqrt{\int_{-\infty}^{+\infty} f(x)^2 e^{-x^2} dx} \sqrt{\int_{-\infty}^{+\infty} x^{2n} e^{-x^2} dx}$$

d'après l'inégalité de Cauchy-Schwarz, soit

$$\int_{-\infty}^{+\infty} \left| f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \right| dx \leqslant \frac{|\xi|^n}{n!} ||f|| \sqrt{M_n}$$

Posons

$$v_n = \frac{|\xi|^n}{n!} ||f|| \sqrt{\mathbf{M}_n}$$

pour tout $n \in \mathbb{N}$. Il suffit donc de montrer que la série $\sum v_n$ converge. Si $\xi = 0$ ou f est la fonction nulle, le résultat est immédiat. Sinon, pour tout $n \in \mathbb{N}$, on a $v_n \neq 0$ et on constate que

$$\frac{v_{n+1}}{v_n} = \frac{|\xi|^{n+1} n! ||f|| \sqrt{M_{n+1}}}{|\xi|^n (n+1)! ||f|| \sqrt{M_n}} = \frac{\xi}{n} \sqrt{\frac{M_{n+1}}{M_n}} = \frac{|\xi|}{n} \sqrt{n + \frac{1}{2}} \underset{n \to +\infty}{\sim} \frac{|\xi|}{\sqrt{n}}$$

et que cette dernière expression tend vers 0 < 1 quand n tend vers $+\infty$. Par conséquent, d'après le critère de d'Alembert, la série

$$\sum \frac{|\xi|^n}{n!} ||f|| \sqrt{\mathbf{M}_n}$$

converge, et d'après le théorème de comparaison des séries à termes positifs, la série suivante converge également :

$$\sum \int_{-\infty}^{+\infty} \left| f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \right| dx$$

On peut donc appliquer le théorème d'intégration terme à terme, ce qui donne, pour tout $\xi \in \mathbb{R}$,

$$\mathscr{F}(f)(\xi) = \sum_{n=0}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) \, x^n \, \mathrm{e}^{-x^2} \, \mathrm{d}x \right) \frac{(-\mathrm{i})^n \xi^n}{n!}$$

Par conséquent,

 $\mathscr{F}(f)$ est développable en série entière sur \mathbb{R} .

39 On a montré à la question 22 que pour tout $n \in \mathbb{N}$, (H_0, \ldots, H_n) forme une base de $\mathbb{R}_n[X]$. En particulier, $X^n \in \mathbb{R}_n[X] = \text{Vect}(H_0, \ldots, H_n)$, donc f est orthogonale à X^n , c'est-à-dire

$$\forall n \in \mathbb{N}$$
 $\int_{-\infty}^{+\infty} x^n f(x) e^{-x^2} dx = 0$

40 Pour tout $\xi \in \mathbb{R}$, les formules obtenues aux questions 38 et 39 donnent

$$\mathscr{F}(f)(\xi) = \sum_{n=0}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) x^n e^{-x^2} dx \right) \frac{(-i)^n \xi^n}{n!} = 0$$

Autrement dit,

$$\mathscr{F}(f)$$
 est la fonction nulle.

41 Puisque \mathscr{F} est une application linéaire injective, Ker $\mathscr{F} = \{0\}$. On vient cependant de montrer que $f \in \text{Ker } \mathscr{F}$, donc f = 0. On en déduit que

$$(\text{Vect } (\mathbf{H}_n, n \in \mathbb{N}))^{\perp} = \{0\}$$

c'est-à-dire

La famille $(\mathbf{H}_n)_{n\in\mathbb{N}}$ est une base hilbertienne de E.