1.

_ (*) _

Etudier la fonction f définie par

$$f(x) = \arcsin\left(\sqrt{\frac{1}{2} + \sqrt{x}}\right) + \arcsin\left(\sqrt{\frac{1}{2} - \sqrt{x}}\right)$$

Commençons déjà par déterminer le domaine de définition de f et sa classe. La quantité f(x) est bien définie lorsque

$$x \ge 0$$
 et $\frac{1}{2} - \sqrt{x} \ge 0$ et $\sqrt{\frac{1}{2} + \sqrt{x}} \le 1$

On vérifie facilement que ces trois conditions sont réunies si et seulement si $x \in [0; 1/4]$. D'après les théorèmes généraux, on en déduit alors que f est continue sur [0; 1/4] et de classe \mathcal{C}^{∞} sur]0; 1/4[. Pour tout 0 < x < 1/4, on a

$$f'(x) = \frac{1}{2\sqrt{x}} \cdot \frac{1}{2\sqrt{\frac{1}{2} + \sqrt{x}}} \cdot \frac{1}{1 - \left(\sqrt{\frac{1}{2} + \sqrt{x}}\right)^2} + \frac{-1}{2\sqrt{x}} \cdot \frac{1}{2\sqrt{\frac{1}{2} - \sqrt{x}}} \cdot \frac{1}{1 - \left(\sqrt{\frac{1}{2} - \sqrt{x}}\right)^2}$$

On en déduit que f' est nulle sur]0;1/4[. Par conséquent, f est constante sur]0;1/4[, donc sur [0;1/4] par continuité. Pour déterminer sa valeur, il suffit de prendre la valeur en un point judicieux. Par exemple,

$$f(1/4) = \arcsin\left(\frac{\sqrt{3}}{2}\right) + \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2}$$

Finalement,

La fonction f est constante égale à $\pi/2$ sur son domaine de définition [0;1/4].

2

_____ (**) _____

A quelle condition portant sur le réel k l'équation d'inconnue $x \in \mathbb{R}$, $2\arcsin x = \arcsin kx$ a-t-elle des solutions non nulles? Quelles sont alors ces solutions?

Si k = 0, l'équation n'a pas de solution non nulle, car arcsin s'annule seulement en 0. De même, si k < 0, il n'y a pas de solution non nulle car $\arcsin(x)$ et $\arcsin(kx)$ sont alors de signes opposés pour tout $x \neq 0$. Dans toute la suite, on suppose donc k > 0. Sous réserve d'existence d'une solution non nulle, on a nécessairement

$$\sin(2\arcsin(x)) = kx$$
 soit $2x\sqrt{1-x^2} = kx$ d'où $k = 2\sqrt{1-x^2}$

d'où

$$k \in]0;2[$$
 et $|x| = \sqrt{1 - \frac{k^2}{4}}$

Réciproquement, fixons $k \in]0;2[$ et notons $x_k = \sqrt{1 - \frac{k^2}{4}}.$

- Le réel x_k est strictement inférieur à 1, donc $\arcsin(x)$ est bien défini.
- Notons $\varphi: k \longmapsto k\sqrt{1-k^2/4} = \sqrt{k^2-k^4/4}$. Une étude rapide de fonction montre que φ est à valeurs dans [0;1]. Plus précisement, φ est croissante sur $[0;\sqrt{2}]$, décroissante sur $[\sqrt{2};1]$, atteint son minimum 0 en 0 et en 2, et son maximum 1 en $\sqrt{2}$. Ces variations assurent que $\arcsin(kx_k)$ est bien défini.
- Enfin, d'après les calculs précédents (repris en sens inverse), on a $kx_k = \sin(2\arcsin(x_k))$. Le fait que kx_k appartienne à]0;1[permet d'appliquer arcsin et d'obtenir $2\arcsin(x_k) = \arcsin(kx_k)$. Par parité de arcsin, on en déduit que $-x_k$ est également solution de l'équation.

On peut donc conclure.

L'équation $2\arcsin(x) = \arcsin(kx)$ a une solution non nulle si et seulement si k appartient à]0; 2[, auquel cas elle admet les deux solutions $\sqrt{1 - k^2/4}$ et $-\sqrt{1 - k^2/4}$.

3

_____(**) _____

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels et $(b_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. On définit une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes par

$$P_0 = 1, P_1 = a_1 + X$$
 et $\forall n \ge 1, P_{n+1} = (a_{n+1} + X)P_n - b_n P_{n-1}$

Montrer que pour tout $n \ge 1$, le polynôme P_n a n racines distinctes, séparées par celles de P_{n-1} .

Pour tout entier n, on note \mathcal{P}_n le prédicat suivant :

 \mathcal{P}_n : Les polynômes P_n et P_{n+1} sont de degrés n et n+1, scindés à racines simples, et leurs racines $\alpha_1, \ldots, \alpha_n$ et $\beta_1, \ldots, \beta_{n+1}$ satisfont

$$\beta_1 < \alpha_1 < \beta_2 < \dots < \beta_n < \alpha_n < \beta_{n+1}$$

Une récurrence immédiate prouve que P_n est unitaire et de degré n pour tout entier n. Il est clair que \mathcal{P}_0 est vrai puisque P_0 n'a aucune racines réelles, tandis que P_1 admet $-a_1$ comme unique racine. Soit maintenant $n \in \mathbb{N}^*$ tel que P_{n-1} soit vrai. Montrons que P_n est vrai.

Par hypothèse de récurrence, P_n est scindé sur \mathbb{R} . Notons $\alpha_1, \ldots, \alpha_n$ ses racines. Il nous suffit en fait de montrer que P_{n+1} s'annule sur chacun des intervalles

$$]-\infty; \alpha_1[$$
 $]\alpha_1; \alpha_2[$ \cdots $]\alpha_{n-1}; \alpha_n[$ $]\alpha_n; +\infty[$

pour conclure. On aura alors au moins n+1 racines pour P_{n+1} donc toutes ses racines, avec les encadrements souhaités.

Pour tout $i \in [1; n]$, on a

$$P_{n+1}(\alpha_i) = -b_n P_{n-1}(\alpha_i)$$

Déterminons le signe de ces quantités. On sait que P_{n-1} est scindé sur \mathbb{R} , et que si l'on note $\lambda_1, \ldots, \lambda_{n-1}$ ses racines, alors

$$\alpha_1 < \lambda_1 < \alpha_2 < \dots < \alpha_{n-1} < \lambda_{n-1} < \alpha_n$$

Puisque P_{n-1} est unitaire, il est strictement positif sur $]\lambda_{n-1}; +\infty[$ et puisqu'il est scindé, il change de signe en chaque racine. On en déduit que $P_{n-1}(\alpha_i)$ est du signe de $(-1)^{n-i}$, puis que $P_{n+1}(\alpha_i)$ est du signe de $(-1)^{n+1-i}$.

Le théorème des valeurs intermédiaires assure donc d'ores et déjà l'existence d'une racine de P_{n+1} sur $]\alpha_{i-1}; \alpha_i[$ pour tout $i \in [2; n]$. Pour conclure, il suffit de remarquer que

- $P_{n+1}(\alpha_n) < 0$ et P_{n+1} est strictement positif au voisinage de $+\infty$ (car il est unitaire). On en conclut l'existence d'au moins une racine sur $]\alpha_n; +\infty[$.
- $P_{n+1}(\alpha_1)$ est du signe de $(-1)^n$ tandis que P_{n+1} est du signe de son terme de plus haut degré, soit $(-1)^{n+1}$ au voisinage de $-\infty$. On en conclut l'existence d'au moins une racine sur $]-\infty$; $\alpha_1[$.

On déduit de tout ceci que \mathcal{P}_{n+1} est vérifié. Par récurrence, on peut donc en conclure que

Pour tout $n \ge 1$, le polynôme P_n a n racines distinctes, séparées par celles de P_{n-1} .

4

_____ (**) _____

Soient f et g deux applications continues sur I = [a; b]. Soit φ la fonction définie par

$$\varphi: \ \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \sup_{t \in I} \ (f(t) + xg(t))$$

Montrer que φ est lipschitzienne.

Soient $x, y \in \mathbb{R}$ et $t \in [a; b]$. Alors,

$$\begin{split} f(t) + x \, g(t) &= f(t) + y \, g(t) + (y - x) g(t) \\ &\leq \sup_{t \in [a;b]} \left(f(t) + y \, g(t) \right) + |y - x| \, ||g||_{\infty,[a;b]} \end{split}$$

On peut maintenant passer à la borne supérieur à gauche (le terme de droite ne dépend plus de t) et il vient

$$\varphi(x) \le \varphi(y) + |y - x| ||g||_{\infty,[a;b]}$$
 d'où $\varphi(x) - \varphi(y) \le |y - x| ||g||_{\infty,[a;b]}$

Par symétrie des rôles de x et y, on a la même majoration pour $\varphi(y) - \varphi(x)$ soit au final

$$\forall x, y \in \mathbb{R}, \qquad |\varphi(x) - \varphi(y)| \le ||g||_{\infty, [a:b]} \cdot |y - x|$$

Notamment

L'application φ est lipschitzienne.

<u>ə</u> –

_____ (**) _____

_ X PC 2014

Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ deux applications continues. On suppose que $f \circ g = I_d$. Montrer que f et g sont bijectives.

Commençons déjà par remarquer que f est surjective et que g est injective. En effet,

$$\forall y \in \mathbb{R}, \quad y = f(g(y))$$
 d'où $y \in f(\mathbb{R})$ et $f(\mathbb{R}) = \mathbb{R}$

$$\forall x, y \in \mathbb{R}^2, \quad g(x) = g(y) \implies f(g(x)) = f(g(y)) \quad \text{d'où} \quad x = y$$

Puisque g est continue et injective, elle est nécessairement strictement monotone (\star). Par théorème de la limite monotone, elle admet donc des limites (éventuellement infinies) en $+\infty$ et en $-\infty$. Supposons par exemple que la limite en $+\infty$ soit un réel α . Alors, lorsque n tend vers $+\infty$,

$$g(n) \xrightarrow[n \to +\infty]{} \alpha$$
 et $f(g(n)) = n \xrightarrow[n \to +\infty]{} +\infty$

Cela contredit la continuité de f en α . Par conséquent, g a une limite infinie en $+\infty$ (qui vaut $+\infty$ si g est croissante, $-\infty$ sinon). On montre de la même manière que g a une limite infinie en $-\infty$ (de signe opposé à celle en $+\infty$ par monotonie). Finalement, g étant continue et de limites infinies et opposées en $+\infty$ et $-\infty$, le théorème des valeurs intermédiaires assure la surjectivité de g. La fonction g est donc bijective, et puisque $f \circ g = I_d$, il vient en composant à droite par g^{-1} que $f = g^{-1}$ et donc que f est également bijective.

Les fonctions
$$f$$
 et g sont bijectives.

 (\star) : Ce résultat intuitif n'est pas explicitement au programme de la filière PCSI. Il apparaît en revanche explicitement à celui de la filière MPSI. Je ne pense pas qu'il y ait un gros souci à l'utiliser sans justification.

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ continue. On note

$$A = \left\{ \alpha \in \mathbb{R}, \ \exists (x_n)_{n \in \mathbb{N}}, \ x_n \xrightarrow[n \to +\infty]{} +\infty \ \text{et} \ f(x_n) \xrightarrow[n \to +\infty]{} \alpha \right\}$$

Montrer que pour tous $a < b \in A$, $[a; b] \subset A$.

Commençons par justifier le résultat de l'indication par l'absurde. Soient a et b appartenant à A (donc limite de suites de la forme $(f(x_n))_{n\in\mathbb{N}}$ avec $(x_n)_{n\in\mathbb{N}}$ de limite $+\infty$). Supposons donc qu'il existe $c\in[a;b]$, $\epsilon>0$ et $M\in\mathbb{R}_+$ tel que

$$\forall x \in [M; +\infty[, f(x) \notin]c - \epsilon; c + \epsilon[$$

En particulier, puisque f est continue, cela impose que soit $f(x) \ge c + \epsilon$ sur tout l'intervalle $[M; +\infty[$, soit $f(x) \le c - \epsilon$ sur tout l'intervalle. Sans perdre de généralité, on peut se placer dans le premier cas, et alors, pour toute suite $(x_n)_{n \in \mathbb{N}}$ de limite $+\infty$, on a à partir d'un certain rang

$$x_n > M$$
 d'où $f(x_n) > c + \epsilon$

Cela assure que si une suite $(x_n)_{n\in\mathbb{N}}$ tend vers $+\infty$, alors la suite $(f(x_n))_{n\in\mathbb{N}}$, si elle converge, ne peut avoir qu'une limite supérieur ou égale à $c+\epsilon$. En particulier, elle ne peut pas converger vers b. Cela contredit l'appartenance de b à A. Ainsi,

$$\forall c \in [a; b], \quad \forall \epsilon > 0, \quad \forall M \in \mathbb{R}_+, \quad \exists x > M, \qquad f(x) \in]c - \epsilon; c + \epsilon[$$
 (*)

Fixons maintenant $c \in]a;b[$ et construisions une suite $(x_n)_{n \in \mathbb{N}}$ de limite $+\infty$ telle que $(f(x_n)_{n \in \mathbb{N}}$ converge vers c.

- On prend $\epsilon = 1$ et M = 0. Alors par (\star) , il existe $x_0 > M$ tel que $f(x_0) \in]c 1; c + 1[$.
- On prend ensuite $\epsilon = 1/2$ et $M = x_0 + 1$. Toujours par (\star) , il existe cette fois $x_1 > x_0 + 1$ tel que $f(x_1) \in [c 1/2; c + 1/2]$.
- Plus généralement, une fois construits les n premiers éléments x_0, \ldots, x_n , on construit via (\star) un réel $x_{n+1} > x_n + 1$ tel que $f(x_n) \in]c 1/2^n$; $c + 1/2^n$ [.

La suite $(x_n)_{n\in\mathbb{N}}$ ainsi construite vérifie par définition que pour tout entier n,

$$x_{n+1} - x_n > 1$$
 d'où $x_n > x_0 + n \xrightarrow[n \to +\infty]{} +\infty$

et par ailleurs

$$f(x_n) \in \left] c - \frac{1}{2^n}; c + \frac{1}{2^n} \right[\quad \text{d'où} \quad f(x_n) \xrightarrow[n \to +\infty]{} c$$

ce qui prouve que $c \in A$. Ainsi,

$$\forall a < b \in A, \qquad [a; b] \subset A$$

Remarque : En d'autre termes, A est une partie convexe de \mathbb{R} , c'est-à-dire un intervalle.

Soit $f: t \mapsto 1/(1+t^2)$. Montrer que pour tout $n \in \mathbb{N}$, $|f^{(n)}|$ est majorée par n! et calculer $f^{(n)}(1)$.

Pour tout
$$t \in \mathbb{R}$$
, on a
$$f(t) = \frac{1}{(1+it)(1-it)} = \frac{1}{2} \left(\frac{1}{1-it} + \frac{1}{1+it} \right)$$

Par conséquent, pour tout entier n et tout réel t

$$f^{(n)}(t) = \frac{n!}{2} \left(\frac{i^n}{(1-it)^{n+1}} + \frac{(-i)^n}{(1+it)^{n+1}} \right) \quad \text{puis} \quad \left| f^{(n)}(t) \right| \le \frac{n!}{2} \left(\frac{1}{\left| 1-it \right|^{n+1}} + \frac{1}{\left| 1+it \right|^{n+1}} \right)$$

Sachant que 1+it et 1-it sont deux de module $\sqrt{1+t^2}$ qui est toujours supérieur à 1, il vient

$$|f^{(n)}| \le n!$$

Calculons maintenant $f^{(n)}(1)$. On reprend le calcul précédent en remarquant que $1+i=\sqrt{2}e^{i\pi/4}$ et $1-i=\sqrt{2}e^{-i\pi/4}$. En utilisant les écritures trigonométriques, il vient

$$f^{(n)}(1) = \frac{n!}{2(\sqrt{2})^{n+1}} \left(e^{in\pi/2} e^{i(n+1)\pi/4} + e^{-in\pi/2} e^{-i(n+1)\pi/4} \right)$$
$$= \frac{n!}{(\sqrt{2})^{n+1}} \frac{e^{(3n+1)i\pi/4} + e^{-(3n+1)i\pi/4}}{2}$$

et donc

$$f^{(n)}(1) = n! \cdot 2^{-(n+1)/2} \cos((3n+1)\pi/4)$$

8

Soit f de classe \mathcal{C}^1 sur \mathbb{R} , périodique, non constante et a>0. Montrer qu'il existe un réel x tel que la tangente en (x,f(x)) à la courbe représentative de f recoupe celui-ci en (x+a, f(x+a)).

____ (**) _____

Soit $x_0 \in \mathbb{R}$ quelconque. La tangente à la courbe réprésentative de f en $(x_0, f(x_0))$ est la droite d'équation

$$T_0: y = f'(x_0)(x - x_0) + f(x_0)$$

Elle intersecte donc la courbe en $(x_0 + a, f(x_0 + a))$ si et seulement si

$$f(x_0 + a) = af'(x_0) + f(x_0)$$

Notons donc

$$g: x \longmapsto f(x+a) - af'(x) - f(x)$$

On est donc ramené à justifier que g s'annule au moins une fois. Pour cela, on sait que la fonction f est périodique et continue. Elle admet donc un maximum et un minimum global sur \mathbb{R} . Soit x_1 et x_2 les points en lesquels ces extremums sont atteints. Alors nécessairement $f'(x_1) = f'(x_2) = 0$ (sinon f est strictement monotone au voisinage de ces points, et ne peut atteindre un extremum local). Dès lors,

$$g(x_1) = f(x_1 + a) - f(x_1) = f(x_1 + a) - \max f \le 0$$
 et $g(x_2) = f(x_2 + a) - f(x_2) = f(x_2 + a) - \min f \ge 0$

Le théorème des valeurs intermédiaires permet de conclure : la fonction g s'annule au moins une fois et donc

Il existe un réel x tel que la tangente en (x, f(x)) à la courbe représentative de f recoupe celui-ci en (x + a, f(x + a)).

______ (***) ______ X PC 2014

Soit $k \in [0, 1]$, $\ell \in \mathbb{R}$ et $f : \mathbb{R} \longrightarrow \mathbb{R}$, continue en 0 telle que

$$\frac{f(x) - f(kx)}{x} \xrightarrow[x \to 0]{} \ell$$

Montrer que f est dérivable en 0 en calculer f'(0).

On traite dans un premier temps le cas où $\ell = 0$. Soit $\epsilon > 0$. Il existe $\eta > 0$ tel que

$$\forall t \in [\eta; \eta] \setminus \{0\}, \qquad \left| \frac{f(t) - f(kt)}{t} \right| \le \epsilon \quad \text{soit} \quad |f(t) - f(kt)| \le \epsilon t$$

Soit maintenant $x \in [\eta; \eta]$ non nul. Alors, $k^n x$ appartient à $[-\eta; \eta]$ pour tout $n \in \mathbb{N}^*$ et donc

$$\forall n \in \mathbb{N}^*, \qquad |f(k^n x) - f(k^{n+1} x)| \le \epsilon k^n x$$

En sommant ces égalités de 1 à $n \in \mathbb{N}$, puis en utilisant l'égalité triangulaire, on obtient

$$|f(x) - f(k^{n+1} x)| \le \sum_{i=1}^{n} |f(k^{i} x) - f(k^{i+1} x)| \le \sum_{i=1}^{n} \epsilon k^{i} x$$

Par continuité de f en 0, on peut faire tendre n vers $+\infty$. Le terme $f(k^{n+1}x)$ converge vers f(0), et la somme géométrique converge, de sorte qu'en passant à la limite,

$$|f(x) - f(0)| \le \epsilon x \sum_{i=1}^{+\infty} k^i = \frac{\epsilon}{1-k} x$$
 soit $\left| \frac{f(x) - f(0)}{x} \right| \le \frac{\epsilon}{1-k}$

Ceci étant valable pour tout $x \in [-\eta; \eta]$, et le réel ϵ ayant été choisi arbitrairement, il s'ensuit que (f(x) - f(0))/x tend vers 0 en 0. Ainsi, f est dérivable en 0 avec f'(0) = 0.

Pour le cas général, il suffit de poser $g: x \mapsto f(x) - \ell x/(1-k)$. On vérifie facilement que ((gx) - g(kx))/x tend vers 0 en 0, ce qui permet d'appliquer ce qui précède. On en conclut que g est dérivable en 0 (de dérivée nulle), et donc f également avec $f'(0) = \ell/(1-k)$. Dans tous les cas,

La fonction f est dérivable en 0, avec $f'(0) = \ell/(1-k)$.

10

Soit I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}_+^*$. Montrer que ln f est convexe si et seulement si pour tout $\alpha > 0$, f^{α} est convexe.

Fixons $x, y \in I$ et $t \in [0; 1]$.

• Si l'on suppose ln f convexe, alors

$$\ln f((1-t) x + t y) \le (1-t) \ln f(x) + t \ln f(y)$$

En multipliant par $\alpha > 0$, puis en utilisant les propriétés de ln, il vient

$$\ln f^{\alpha}((1-t)x + ty) \le (1-t)\ln f^{\alpha}(x) + t\ln f^{\alpha}(y)$$

Par suite, la concavité de ln assure que

$$(1-t) \ln f^{\alpha}(x) + t \ln f^{\alpha}(y) \le \ln ((1-t) f^{\alpha}(x) + t f^{\alpha}(y))$$

En combinant les deux inégalités et en passant à l'exponentielle qui est croissante, on obtient finalement

$$f^{\alpha}((1-t)x+ty) \le (1-t)f^{\alpha}(x)+tf^{\alpha}(y)$$

L'inégalité ayant été obtenue pour x, y, t quelconque, on en déduit que f^{α} est convexe, et ce pour tout $\alpha > 0$.

• Si l'on suppose f^{α} convexe pour tout $\alpha > 0$, alors

$$f^{\alpha}((1-t)x + ty) \le (1-t)f^{\alpha}(x) + tf^{\alpha}(y)$$

En passant au logarithme, puis en divisant par α , il vient

$$\ln f((1-t) x + t y) \le \frac{1}{\alpha} \ln [(1-t) f^{\alpha}(x) + t f^{\alpha}(y)]$$

Remarquons maintenant que lorsque α tend vers 0, on peut effectuer le développement limité

$$f^{\alpha}(x) = e^{\alpha \ln f(x)} = 1 + \alpha \ln f(x) + O(\alpha^2)$$

et de même pour $f^{\alpha}(y)$ de sorte que

$$\ln\left[\left(1-t\right)f^{\alpha}(x)+t\,f^{\alpha}(y)\right] \underset{\alpha\to 0}{=} \ln\left[1+\alpha\left(\left(1-t\right)\ln f(x)+t\,\ln f(y)\right)+O(\alpha^{2})\right]$$

$$\underset{\alpha\to 0}{=} \alpha\left(\left(1-t\right)\ln f(x)+t\,\ln f(y)\right)+O(\alpha^{2})$$

et ainsi

$$\ln f((1-t)x + ty) \le (1-t)\ln f(x) + t\ln f(y) + O(\alpha)$$

En passant à la limite lorsque α tend vers 0, on peut donc conclure que

$$\ln f((1-t) x + t y) \le (1-t) \ln f(x) + t \ln f(y)$$

L'inégalité ayant été obtenue pour x, y, t quelconque, on en déduit que $\ln f$ est convexe.

La fonction $\ln f$ est convexe si et seulement si f^{α} est convexe pour tout $\alpha > 0$.

11

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe et dérivable.

- (a). Montrer que $x \mapsto f(x) x f'(x)$ admet une limite dans $\mathbb{R} \cup \{-\infty\}$ en $+\infty$.
- (b). Si cette limite p est finie, montrer que f(x)/x et f'(x) admettent une même limite finie m en $+\infty$.
- (c). Montrer que $g: x \longmapsto f(x) mx p$ tend vers 0 en $+\infty$.

A FAIRE!

12

____ (*) _

Calculer une primitive de $x \mapsto \frac{1}{x\sqrt{2x-x^2}} dx$ à l'aide du changement de variable $t = \sqrt{(2-x)/x}$.

On pose $t = \sqrt{(2-x)/x}$. Alors,

 $t^2 = \frac{2}{x} - 1$ $x = \frac{2}{1 + t^2}$ et $dx = -\frac{4t}{(1 + t^2)^2} dt$

et ainsi,

$$\int \frac{\mathrm{d}x}{x\sqrt{2x-x^2}} = \int \frac{\mathrm{d}x}{x^2\sqrt{(2-x)/x}}$$

$$= \int \frac{(1+t^2)^2}{4t} \frac{-4t}{(1+t^2)^2} \, \mathrm{d}t$$

$$= -\int \, \mathrm{d}t$$

$$\int \frac{\mathrm{d}x}{x\sqrt{2x-x^2}} = -t$$

soit finalement

$$\int \frac{\mathrm{d}x}{x\sqrt{2x-x^2}} = -\sqrt{\frac{2}{x}-1}$$

13 ______(**) ____

Etudier la fonction $f: x \longmapsto \int_x^{2x} \frac{1}{\ln(1+t)} dt$.

L'application $\varphi: t \longmapsto 1/\ln(1+t)$ est définie sur $\mathcal{D} =]-1; 0[\cup]0; +\infty[$. L'application f est donc définie en tout point x pour lequel [x; 2x] est inclus dans \mathcal{D} . Ainsi,

La fonction f est définie sur $\mathcal{D}_f =]-1/2; 0[\cup \mathbb{R}_+^*]$.

Sur son domaine de définition, f est de classe \mathcal{C}^{∞} d'après les théorèmes généraux, avec

$$\forall x \in \mathcal{D}_f, \qquad f'(x) = \frac{2}{\ln(1+2x)} - \frac{1}{\ln(1+x)} = \frac{2\ln(1+x) - \ln(1+2x)}{\ln(1+x)\ln(1+2x)}$$

Or, pour tout réel x, d'après les propriétés additives et la croissance de ln,

$$2\ln(1+x) - \ln(1+2x) = \ln\left((1+x)^2\right) - \ln(1+2x) = \ln(1+2x+x^2) - \ln(1+2x) > 0$$

Puisque les quantités $\ln(1+x)$ et $\ln(1+2x)$ sont de mêmes signes sur \mathcal{D}_f , il s'ensuit que

L'application f est C^1 et strictement croissante sur]-1/2;0[et \mathbb{R}_+^* .

Il reste à étudier le comportement de f en $+\infty$, à gauche et à droite en 0, et en -1/2. Pour l'étude en $+\infty$, on a l'encadrement pour x > 0

$$\frac{2x - x}{\ln(1+x)} \le \int_{x}^{2x} \frac{\mathrm{d}t}{\ln(1+t)} \le \frac{2x - x}{\ln(1+2x)}$$

Sachant que $\ln(1+2x) = \ln x + \ln(2+1/x) \sim \ln x$, on en déduit aussitôt que f tend vers $+\infty$ en $+\infty$, ainsi que l'équivalent

$$f(x) \underset{x \to +\infty}{\sim} \frac{x}{\ln x}$$

Pour le comportement en -1/2, on peut remarquer que la fonction φ est prolongeable par continuité en -1 par $\varphi(0) = 0$. Si l'on note $\widetilde{\varphi}$ ce prolongement, on a immédiatement

$$\lim_{x \to -1} f(x) = \int_{-1}^{-1/2} \widetilde{\varphi}(t) \, dt = \int_{-1}^{-1/2} \frac{dt}{\ln(1+t)}$$

Remarque: Maple donne 0.3786710430 pour valeur approchée de cette limite.

Pour le comportement en 0, on commence par remarquer que

$$\frac{1}{\ln(1+t)} \underset{t \to 0}{=} \frac{1}{t} + O(t) \qquad \text{d'où} \qquad \exists \delta > 0, \quad \exists A \in \mathbb{R}_+, \quad \forall t \in \left] -\delta; \delta\right[, \qquad \left|\frac{1}{\ln(1+t)} - \frac{1}{t}\right| \leq A\left|t\right|$$

Pour $|x| < \delta/2$, on peut alors écrire

$$\left| \int_{x}^{2x} \frac{\mathrm{d}t}{\ln(1+t)} - \int_{x}^{2x} \frac{\mathrm{d}t}{t} \right| \le \left| \int_{x}^{2x} A|t| \, \mathrm{d}t \right| \le \frac{3A}{2} x^{2}$$

$$|f(x) - \ln 2| \le \frac{3A}{2} x^{2} \xrightarrow{x \to 0} 0$$

soit encore

et donc

La fonction f admet $\ln 2$ pour limite en 0.

14

(a). Soit $f:[a;b]\longrightarrow \mathbb{C}$ continue. On suppose que

$$\forall x \in [a; b], \qquad f(a+b-x) = f(x)$$

Exprimer $\int_a^b t f(t) dt$ en fonction de $\int_a^b f(t) dt$.

- (b). En déduire la valeur de $\int_0^{\pi} \frac{t}{1+\sin t} dt$.
- (a) Posons u = a + b x. Alors, du = -dx et

$$\int_{a}^{b} t f(t) dt = -\int_{b}^{a} (a+b-u)f(a+b-u) du$$
$$= \int_{a}^{b} (a+b-u) f(u) du$$
$$\int_{a}^{b} t f(t) dt = (a+b)\int_{a}^{b} f(t) dt - \int_{a}^{b} u f(u) du$$

et donc

$$\int_{a}^{b} t f(t) dt = \frac{a+b}{2} \int_{a}^{b} f(u) du$$

(b) Pour tout réel t, on a $\sin(\pi - t) = \sin t$ donc d'après la question précédente (avec a = 0 et $b = \pi$),

$$\int_0^{\pi} \frac{t}{1+\sin t} \, \mathrm{d}t = \frac{\pi}{2} \int_0^{\pi} \frac{\mathrm{d}t}{1+\sin t}$$

On pose alors le changement de variable $t = \tan(\theta/2)$, où $\theta \longmapsto \tan(\theta/2)$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_+ dans $[0; \pi/2]$. Alors,

$$\sin t = \frac{2\theta}{1+\theta^2}$$
 et $dt = \frac{2 d\theta}{1+\theta^2}$

et donc

$$\int_0^{\pi} \frac{\mathrm{d}t}{1+\sin t} = \int_0^{+\infty} \frac{1}{1+\frac{2\theta}{1+\theta^2}} \frac{2\,\mathrm{d}\theta}{1+\theta^2}$$

$$= \int_0^{+\infty} \frac{2\,\mathrm{d}\theta}{1+2\theta+\theta^2} = \int_0^{+\infty} \frac{2\,\mathrm{d}\theta}{1+2\theta+\theta^2}$$

$$= \int_0^{+\infty} \frac{2\,\mathrm{d}\theta}{(1+\theta)^2}$$

$$\int_0^{\pi} \frac{\mathrm{d}t}{1+\sin t} = \left[-\frac{2}{1+\theta}\right]_0^{+\infty} = 2$$

Finalement,

$$\int_0^{\pi} \frac{t}{1 + \sin t} \, \mathrm{d}t = \pi$$

Soit $f \in \mathcal{C}^1([0;1],\mathbb{R})$ telle que f(0) = 0.

- (a). Montrer que $2 \int_0^1 f(t)^2 dt \le \int_0^1 f'(t)^2 dt$.
- (b). On suppose de plus que f(1) = 0. Améliorer l'inégalité du (a).
- (a) Pour tout $t \in [0, 1]$, on a puisque f(0) = 0,

$$f(x) = f(0) + \int_0^x f'(t) dt = \int_0^x f'(t) dt$$

En appliquant l'inégalité de Cauchy-Schwarz, il vient alors

$$f(x)^2 = \left(\int_0^x f'(t) \, \mathrm{d}t\right)^2 \le \left(\int_0^x 1 \, \mathrm{d}t\right) \left(\int_0^x f'(t)^2 \, \mathrm{d}t\right) \le x \left(\int_0^1 f'(t)^2 \, \mathrm{d}t\right)$$

Il ne reste plus qu'à intégrer de 0 à 1 pour conclure.

$$\int_0^1 f(t)^2 \, \mathrm{d}t \le \frac{1}{2} \int_0^1 f'(t)^2 \, \mathrm{d}t$$

(b) Le même travail que précédemment donne

$$\forall x \in [0; 1/2], \quad f(x) \le x \int_0^{1/2} f'(t)^2 dt \qquad \text{puis} \qquad \int_0^{1/2} f(t)^2 dt \le \frac{1}{8} \int_0^{1/2} f'(t)^2 dt$$

Par ailleurs, puisque f(1) = 0, on peut cette fois écrire pour tout $x \in [1/2; 1]$

$$f(x)^2 = \left(\int_1^x f'(t) \, \mathrm{d}t\right)^2 \le \left(\int_x^1 1 \, \mathrm{d}t\right) \left(\int_x^1 f'(t)^2 \, \mathrm{d}t\right) \le (1 - x) \left(\int_{1/2}^1 f'(t)^2 \, \mathrm{d}t\right)$$

En intégrant entre 1/2 et 1, on obtient cette fois

$$\int_{1/2}^{1} f(t)^2 dt \le \frac{1}{8} \int_{1/2}^{1} f'(t)^2 dt$$

et finalement, en sommant les deux inégalités obtenues

$$\int_0^1 f(t)^2 dt \le \frac{1}{8} \int_0^1 f'(t)^2 dt$$

16

Soit $f: x \longmapsto \int_{e}^{x} \ln(\ln t) dt$. Montrer que $f(x) \underset{x \to +\infty}{\sim} x \ln(\ln x)$.

Soit x > e. On effectue une intégration par partie dans l'expression de f(x). Alors,

$$f(x) = [t \ln(\ln t)]_e^x - \int_e^x \frac{dt}{\ln t} = x \ln(\ln x) - \int_e^x \frac{dt}{\ln t}$$

Par majoration grossière, on a alors

$$0 \le \int_{e}^{x} \frac{\mathrm{d}t}{\ln t} \le \int_{e}^{x} \frac{\mathrm{d}t}{\ln e} = (x - e) = o(x \ln(\ln x))$$

Dès lors,

$$f(x) \underset{x \to +\infty}{\sim} x \ln(\ln x)$$

17

Etudier la limite λ lorsque n tend vers $+\infty$ de $u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$ puis donner un équivalent de $u_n - \lambda$.

Pour tout $n \ge 1$,

$$u_n = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + (k/n)^2}$$

On reconnaît une somme de Riemann, et ainsi

$$u_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{4}$$

Pour déterminer un équivalent de $u_n - \pi/4$, on applique l'inégalité de Taylor-Lagrange à la primitive $F = \arctan \det f : t \longmapsto 1/(1+t^2)$ entre k/n et (k+1)/n. A l'ordre 2, on obtient

$$\forall k \in \llbracket 1; n \rrbracket, \qquad \left| F\left(\frac{k-1}{n}\right) - F\left(\frac{k}{n}\right) + \frac{1}{n} f\left(\frac{k}{n}\right) - \frac{1}{2n^2} f'\left(\frac{k}{n}\right) \right| \leq \frac{1}{6n^3} \sup_{[0;1]} |f''|$$

En sommant ces inégalités pour k allant de 1 à n, et en utilisant l'inégalité triangulaire, il vient par téléscopage

$$\left| F(0) - F(1) + u_n - \frac{1}{2n^2} \sum_{k=1}^n f'\left(\frac{k}{n}\right) \right| \le \frac{1}{n^2} \sup_{[0;1]} |f''|$$

On retrouve alors une somme de Riemann et ainsi

$$\frac{1}{2n^2} \sum_{k=1}^{n} f'\left(\frac{k}{n}\right) \sim \frac{1}{2n} \int_{0}^{1} f'(t) dt = \frac{f(1) - f(0)}{2n}$$

Finalement, sachant que $F(0) - F(1) = -\pi/4$ et que f(1) - f(0) = -1/2, on obtient

$$u_n - \frac{\pi}{4} + \frac{1}{4n} + o\left(\frac{1}{n}\right) = O\left(\frac{1}{n^2}\right)$$

et finalement

$$u_n - \frac{\pi}{4} \underset{n \to +\infty}{\sim} -\frac{1}{4n}$$

18 ______(**)

Déterminer les fonctions $f:\mathbb{R}\longrightarrow\mathbb{R}$ continues telles que

$$f(1) = 1$$
 et $\exists \alpha \in \mathbb{R}^*, \ \forall x \in \mathbb{R}, \quad \int_0^1 f(tx) \, \mathrm{d}t = \alpha f(x)$ (\star)

On pourra chercher une équation différentielle vérifiée par f et discuter suivant les valeurs de α .

Soit f une solution de (\star) . En multipliant l'équation par x puis en effectuant le changement de variable u=xt, on obtient

$$\forall x \in \mathbb{R}, \qquad \int_0^x f(u) \, \mathrm{d}u = \alpha x f(x)$$

Cette égalité prouve que $x \longmapsto xf(x)$ est \mathcal{C}^1 , et donc que f est \mathcal{C}^1 sur \mathbb{R}^* . En dérivant par rapport à x, il vient

$$\forall x \neq 0, \qquad f(x) = \alpha f(x) + \alpha x f'(x) \qquad \text{soit} \qquad \alpha x f'(x) + (\alpha - 1) f(x) = 0$$

On est ramené à une équation différentielle linéaire du premier ordre dont les solutions sur \mathbb{R}_{+}^{*} sont de la forme

$$y: x \longmapsto A \exp\left(-\int_{1}^{x} \frac{\alpha - 1}{\alpha t} dt\right) = A \exp\left(\frac{1 - \alpha}{\alpha} \ln x\right) = Ax^{1/\alpha - 1}$$

avec $A \in \mathbb{R}$. Sachant que f(1) = 1, on obtient donc

$$\forall x \in \mathbb{R}^*$$
, $f(x) = x^{1/\alpha - 1}$

De la même manière, il existe une constante $B \in \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}_{+}^{*}, \qquad f(x) = B |x|^{1/\alpha - 1}$$

mais pour l'instant, on n'a pas de condition permettant d'identifier B. Distinguons maintenant plusieurs cas suivant la valeur de α :

- Si $\alpha > 1$, l'expression précédente montre que f(x) diverge vers $+\infty$ en 0^+ . L'équation (\star) n'admet donc pas de solution continue sur \mathbb{R} .
- Si $\alpha = 1$, la fonction f est constante égale à 1 sur \mathbb{R}_+^* , et constante égale à B sur \mathbb{R}_-^* . Par continuité de f, il vient B = 1. Réciproquement, la fonction constante égale à 1 est solution.
- Enfin, lorsque $\alpha < 1$, on a f(0) = 0 par continuité de f et on peut remarquer que quelle que soit la valeur de B, la fonction f définie par

$$f(x) = \begin{cases} x^{1/\alpha - 1} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ B|x|^{1/\alpha - 1} & \text{si } x < 0 \end{cases}$$

est continue sur \mathbb{R} . De plus, pour tout $x \neq 0$,

$$\int_0^1 (tx)^{1/\alpha - 1} dt = \left[\alpha x^{1/\alpha - 1} t^{1/\alpha} \right]_0^1 = \alpha x^{1/\alpha - 1}$$

La relation reste clairement valable pour x = 0, ce qui établit la relation (\star) .

Pour conclure,

L'équation (\star) n'admet aucune solution si $\alpha > 1$. Seule la fonction constante égale à 1 est solution lorsque $\alpha = 1$. Enfin, lorsque $\alpha < 1$, il y a une infinitié de solutions qui sont données par

$$f: x \longmapsto \begin{cases} x^{1/\alpha - 1} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ B|x|^{1/\alpha - 1} & \text{si } x < 0 \end{cases} \text{ avec } B \text{ arbitraire}$$

19 _____ (**)

Déterminer le DL à l'ordre 2 en $\pi/3$ de $x \longmapsto \arctan(2\sin x)$.

Commençons par poser $x = \pi/3 + h$. Alors, lorsque x tend vers $\pi/3$, h tend vers 0 et

$$f(x) = \arctan(2\sin(\pi/3 + h))$$
$$= \arctan(\sqrt{3}\cos h + \sin h)$$
$$f(x) = \arctan(\sqrt{3} + h - h^2\sqrt{3}/2 + O(h^3))$$

Calculons maintenant le DL de arctan en $\sqrt{3}$, en passant par celui de sa dérivée. Ainsi,

$$\frac{d}{du} \left(\arctan(\sqrt{3} + u) \right) = \frac{1}{1 + (\sqrt{3} + u)^2}$$

$$= \frac{1}{4} \frac{1}{1 + u\sqrt{3}/2 + u^2/4}$$

$$= \frac{1}{4} \left(1 - \left(u \frac{\sqrt{3}}{2} + \frac{u^2}{4} \right) + O(u^2) \right)$$

$$\frac{d}{du} \left(\arctan(\sqrt{3} + u) \right) = \frac{1}{4} - \frac{u\sqrt{3}}{8} + O(u^2)$$

puis

$$\arctan(\sqrt{3} + u) = \arctan\sqrt{3} + \frac{u}{4} - \frac{u^2\sqrt{3}}{16} + O(u^3)$$

En réinjectant ce DL dans le précédent de f, il vient

$$f(x) = \frac{\pi}{3} + \frac{1}{4} \left(h - \frac{h^2 \sqrt{3}}{2} \right) - \frac{\sqrt{3}}{16} \left(h - \frac{h^2 \sqrt{3}}{2} \right)^2 + O(h^3)$$

et finalement

$$f(x) = \frac{\pi}{3} + \frac{1}{4} \left(x - \frac{\pi}{3} \right) - \frac{3\sqrt{3}}{16} \left(x - \frac{\pi}{3} \right)^2 + O\left(x - \frac{\pi}{3} \right)^3$$

20

_____ (*

Déterminer $\lim_{x\to 0^+} (\cos x)^{1/(\sinh x \sin x)}$.

Pour tout $x \in]0; \pi/2[$, on a

$$(\cos x)^{1/\sin x \sin x} = \exp\left(\frac{\ln \cos x}{\sin x \sin x}\right)$$

Lorsque x tend vers 0, on a

$$\operatorname{sh} x \sin x \sim x^2 \qquad \text{et} \qquad \cos x = 1 - \frac{x^2}{2} + O(x^4) \qquad \text{d'où} \qquad \ln \cos x = \ln \left(1 - \frac{x^2}{2} + O(x^4) \right) \sim -\frac{x^2}{2}$$

Par quotient d'équivalent puis composition des limites, il vient

$$\lim_{x \to 0^+} (\cos x)^{1/\sinh x \sin x} = e^{-1/2} = \frac{1}{\sqrt{e}}$$

21

. (**) .

Soit f définie par

$$f:]-\pi/2; \pi/2[\longrightarrow \mathbb{R}$$

 $x \longmapsto \tan x - x$

- (a). Montrer que f admet une fonction réciproque g dont on déterminera les propriétés.
- (b). Déterminer des constantes a et b telles qu'au voisinage de $+\infty$, on ait $g(y) = \frac{\pi}{2} + \frac{a}{y} + \frac{b}{y^2} + o\left(\frac{1}{y^2}\right)$.

Dans toute la suite, on notera $I =]-\pi/2; \pi/2[$.

(a) L'application f est de classe C^{∞} sur I avec pour tout $x \in I$,

$$f'(x) = 1 + \tan^2 x - 1 = \tan^2 x$$

Puisque la dérivée s'annule en un seul point, f est une application strictement croissante sur I, continue et de limite $+\infty$ en $\pi/2$ et $-\infty$ en $-\pi/2$. Par conséquent, elle réalise une bijection entre I et son image $\mathbb R$ et donc

L'application f admet une réciproque g continue et strictement croissante de $\mathbb R$ dans $]-\pi/2;\pi/2[$.

(b) On sait déjà d'après ce qui précède que g tend vers $\pi/2$ par valeur inférieure en $+\infty$. Notons donc $\varphi(y) = \pi/2 - g(y)$. Alors, φ tend vers 0^+ en $+\infty$. D'autre part,

$$y = f(g(y)) = \tan\left(\frac{\pi}{2} - \varphi(y)\right) - \left(\frac{\pi}{2} - \varphi(y)\right) = \cot \varphi(y) - \frac{\pi}{2} + \varphi(y) \tag{(*)}$$

Lorsque u tend vers 0, cotan $u \sim 1/u$. L'égalité précédente devient alors après multiplication par $\varphi(y)$

$$y\varphi(y) = 1 + o(1) + O(\varphi(y)) \xrightarrow[y \to +\infty]{} 1$$
 d'où $\varphi(y) \sim \frac{1}{y}$

Notons maintenant $\varphi(y) = (1 + \psi(y))/y$ avec ψ de limite nulle en $+\infty$. Pour obtenir un équivalent de ψ , on détermine le développement asymptotique de cotan à l'ordre 2. Lorsque u tend vers 0,

$$\begin{split} \cot u &= \frac{\cos u}{\sin u} \\ &= \frac{1 - u^2/2 + O(u^4)}{u - u^3/6 + O(u^5)} \\ &= \frac{1}{u} \left(1 - \frac{u^2}{2} + O(u^4) \right) \left(1 - \frac{u^2}{6} + O(u^4) \right)^{-1} \\ \cot u &= \frac{1}{u} - \frac{u}{3} + O(u^3) \end{split}$$

On réinjecte ce résultat dans (*) pour obtenir avec $\varphi(y) \sim 1/y$

$$y = \frac{y}{1 + \psi(y)} + \frac{\pi}{2} + O\left(\frac{1}{y}\right) \qquad \text{soit} \qquad \frac{y\psi(y)}{1 + \psi(y)} = \frac{\pi}{2} + O\left(\frac{1}{y}\right)$$

Sachant que ψ tend vers 0 en $+\infty$, il s'ensuit l'équivalent $\psi(y) \sim \pi/(2y)$ et donc

$$g(y) \underset{y \to +\infty}{=} \frac{\pi}{2} - \frac{1}{y} + \frac{\pi}{2y} + o\left(\frac{1}{y}\right)$$

22

_____ (**) ____

Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{C})$ telle que f et f'' soient bornées. Notons M_0 (resp. M_2) un majorant de |f| (resp. |f''|). Montrer que f' est bornée sur \mathbb{R} et que l'on a

$$\sup_{x \in \mathbb{R}} |f'(x)| \le \sqrt{2M_0 M_2}$$

Si M_2 est nulle, alors f est une fonction affine, qui n'est bornée sur \mathbb{R} que si elle est constante. L'inégalité est alors évidente car f' est nulle. On suppose donc dans toute la suite que M_2 est non nul. Fixons $x \in \mathbb{R}$. Pour tout h > 0, on a par l'inégalité de Taylor à l'ordre 2

$$|f(x+h) - f(x) - hf'(x)| \le \frac{h^2}{2} \sup_{[x:x+h]} |f''| \le M_2 \frac{h^2}{2} \qquad \text{et de même} \qquad |f(x-h) - f(x) + hf'(x)| \le M_2 \frac{h^2}{2}$$

L'inégalité triangulaire permet alors d'écrire

$$|(f(x+h) - f(x) - hf'(x)) - (f(x-h) - f(x) + hf'(x))| \le M_2h^2$$

soit
$$|f(x+h) - f(x-h) - 2hf'(x)| \le M_2h^2$$
 d'où $|2hf'(x)| \le |f(x+h)| + |f(x-h)| + M_2h^2 \le 2M_0 + M_2h^2$

Finalement,

$$\forall h > 0, \qquad |f'(x)| \le \frac{M_0}{h} + M_2 \frac{h}{2}$$

Une étude rapide de fonction montre que la quantité de droite est minimale lorsque $h = \sqrt{2M_0/M_2}$ et vaut alors $\sqrt{2M_0M_2}$. La majoration étant valable avec x choisi arbitrairement,

La fonction f' est bornée sur $\mathbb R$ et $\sup_{\mathbb R} |f'| \leq \sqrt{2M_0M_2}$.

23 ______(**)

(a). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^5 et impaire. On suppose que f'(0) = 0 et qu'il existe M > 0 majorant $\left| f^{(5)} \right|$. Montrer que

$$\forall x \in \mathbb{R}, \qquad \left| f(x) - \frac{x}{3} f'(x) \right| \le \frac{M}{180} |x|^5$$

(b). Soit $g:[a;b] \longrightarrow \mathbb{R}$ de classe \mathcal{C}^5 . On note M un majorant de $\left|g^{(5)}\right|$ et on suppose que g' s'annule en a,b et (a+b)/2. Justifier que

$$|g(b) - g(a)| \le \frac{M}{2880} (b - a)^5$$

(a) Notons

$$g: x \longmapsto f(x) - \frac{x}{3}f'(x)$$

Alors g est de classe \mathcal{C}^4 sur \mathbb{R} avec pour tout $x \in \mathbb{R}$,

$$g'(x) = \frac{2}{3}f'(x) - \frac{x}{3}f''(x) \qquad g''(x) = \frac{1}{3}f''(x) - \frac{x}{3}f^{(3)}(x) \qquad \text{et} \qquad g^{(3)}(x) = -\frac{x}{3}f^{(4)}(x)$$

On sait que f est impaire, donc $f(0) = f''(0) = f^{(4)}(0) = 0$. De plus, f'(0) = 0. Les expressions précédentes montrent alors que les g ainsi que ses trois premières dérivées s'annulent en 0. Utilisons maintenant l'inégalité des accroissements finis. En l'appliquant à $f^{(4)}$ entre 0 et $x \in \mathbb{R}$, il vient

$$|f^{(4)}(x) - f^{(4)}(0)| \le |x| \sup_{\mathbb{D}} |f^{(5)}|$$
 soit $|f^{(4)}(x)| \le M|x|$

En reportant cette majoration dans l'expression de $g^{(3)}$, il vient

$$\forall t \in \mathbb{R}, \qquad \left| g^{(3)}(t) \right| \le \frac{M}{3} t^2$$

On peut maintenant intégrer cette majoration entre 0 et x. Ainsi, sachant que g''(0) = 0,

$$|g''(x)| = \left| \int_0^x g^{(3)}(t) \, \mathrm{d}t \right| \le \left| \int_0^x \left| g^{(3)}(t) \right| \, \mathrm{d}t \right| \le \left| \frac{M}{3} \int_0^x t^2 \, \mathrm{d}t \right| = \frac{M}{9} |x|^3$$

A l'aide de deux intégration similaires, on obtient ensuite

$$\forall x \in \mathbb{R}, \qquad |g'(x)| \le \frac{M}{36} |x|^4 \qquad \text{puis} \qquad |g(x)| \le \frac{M}{180} |x|^5$$

soit bien

$$\forall x \in \mathbb{R}, \qquad \left| f(x) - \frac{x}{3} f'(x) \right| \le \frac{M}{180} \left| x \right|^5$$

(b) Notons $\delta = (b-a)/2$ et

$$f: [-\delta; \delta] \longrightarrow \mathbb{R}$$

$$x \longmapsto g\left(\frac{a+b}{2} + x\right) - g\left(\frac{a+b}{2} - x\right)$$

On vérifie immédiatement que f est une fonction impaire et \mathcal{C}^5 . De plus, pour tout $x \in [-\delta; \delta]$,

$$f'(x) = g'\left(\frac{a+b}{2} + x\right) + g'\left(\frac{a+b}{2} - x\right)$$
 d'où $f'(0) = 2g'\left(\frac{a+b}{2}\right) = 0$ et $f'(a) = f'(b) = 0$

Notons pour finir que pour tout x,

$$|f^{(5)}(x)| \le |g^{(5)}\left(\frac{a+b}{2} + x\right)| + |g^{(5)}\left(\frac{a+b}{2} - x\right)| \le 2M$$

En appliquant ce qui précède à f en $x = \delta$, on obtient

$$\left| g \left(\frac{a+b}{2} + \delta \right) - g \left(\frac{a+b}{2} - \delta \right) \right| \le \frac{2M}{180} \delta^5$$

soit bien

$$|g(b) - g(a)| \le \frac{M}{2880} (b - a)^5$$

24

Soit $f:[0;1] \longrightarrow \mathbb{R}_+^*$ continue. On note pour tout $\beta>0$

$$\Delta(\beta) = \left(\int_0^1 f(t)^\beta \, \mathrm{d}t\right)^{1/\beta}$$

et on cherche la limite de $\Delta(\beta)$ lorsque β tend vers 0^+ .

- (a). Justifier que $\int_0^1 f(t)^{\beta} dt \xrightarrow[\beta \to 0]{} 1$.
- (b). Démontrer qu'il suffit de déterminer la limite $\lim_{\beta \to 0} \frac{1}{\beta} \left(\int_0^1 f(t)^{\beta} dt 1 \right)$.
- (c). On travaille avec $\beta \in [0;1]$. Justifier l'existence d'un réel K indépendant de x et de β tel que

$$\forall x \in [0; 1], \qquad \left| e^{\beta \ln(f(x))} - 1 - \beta \ln f(x) \right| \le K\beta^2 \left[\ln(f(x)) \right]^2$$

- (d). Conclure.
- (a) La fonction f est continue sur le segment [0;1]. Elle est donc bornée et atteint son maximum M et son minimum m. En particulier, ces valeurs étant atteintes, elles sont strictement positives. Par croissance de la fonction $x \mapsto x^{\beta}$, on a alors

$$\forall t \in [0;1], \qquad m^{\beta} \le f(t)^{\beta} \le M^{\beta} \qquad \text{puis} \qquad m^{\beta} \le \int_0^1 f(t)^{\beta} \, \mathrm{d}t \le M^{\beta}$$

Cet encadrement suffit (avec m > 0) à justifier que

$$\int_0^1 f(t)^{\beta} dt \xrightarrow[\beta \to 0]{} 1$$

(b) Pour tout $\beta > 0$, on peut écrire

$$\ln \Delta(\beta) = \frac{1}{\beta} \ln \left(\int_0^1 f(t)^{\beta} dt \right)$$

La quantité dans le ln tend vers 1 ce qui permet de faire un développement limité et ainsi

$$\ln \Delta(\beta) \sim \frac{1}{\beta} \left(\int_0^1 f(t)^{\beta} dt - 1 \right)$$

Si l'on justifie que ce dernier terme a une limite finie ℓ , on pourra en déduire par composition des limites que $\Delta(\beta)$ converge vers exp ℓ lorsque β tend vers 0. Ainsi,

Il suffit de déterminer la limite
$$\lim_{\beta \to 0} \frac{1}{\beta} \left(\int_0^1 f(t)^\beta dt - 1 \right)$$
 pour conclure.

(c) Fixons x et β dans [0;1]. En appliquant l'inégalité des accroissements finis à la fonction exp, il vient

$$\left| e^{\beta \ln f(x)} - 1 - \beta \ln f(x) \right| \le \frac{1}{2} \left(\sup_{[0:\beta \ln f(x)]} \exp \right) \beta^2 \left(\ln f(x) \right)^2$$

On veut un majorant indépendant de x et de β . Remarquons pour cela que la fonction $|\ln f|$ est continue sur [0;1] donc bornée (et atteint ses bornes). Cela permet de poser $K = \exp\left(\max_{[0:1]} |\ln f|\right)/2$ et ainsi

$$\forall x \in [0; 1], \qquad |e^{\beta \ln f(x)} - 1 - \beta \ln f(x)| \le K\beta^2 (\ln f(x))^2$$

(d) En intégrant l'inégalité de la question précédente, et en remarquant que $e^{\beta \ln f(x)} = f(x)^{\beta}$, il vient

$$\left| \int_0^1 f(x)^{\beta} dx - 1 - \beta \int_0^1 \ln f(x) dx \right| \le \int_0^1 \left| f(x)^{\beta} - 1 - \beta \ln f(x) \right| dx$$
$$\le K\beta^2 \int_0^1 \left(\ln f(x) \right)^2 dx$$

puis en divisant par β ,

$$\left| \frac{1}{\beta} \left(\int_0^1 f(x)^\beta \, \mathrm{d}x - 1 \right) - \int_0^1 \ln f(x) \, \mathrm{d}x \right| = O(\beta)$$

Par suite,

$$\frac{1}{\beta} \left(\int_0^1 f(x)^\beta \, \mathrm{d}x - 1 \right) \xrightarrow[\beta \to 0]{} \int_0^1 \ln f(x) \, \mathrm{d}x$$

et donc

$$\Delta(\beta) = \left(\int_0^1 f(t)^\beta dt\right)^{1/\beta} \xrightarrow[\beta \to 0]{} \exp\left(\int_0^1 \ln f(t) dt\right)$$