Objectifs:

Dans ce problème, on définit la matrice de Gram d'une famille finie de vecteurs d'un espace préhilbertien réel.

La première partie porte sur des calculs de déterminants, la valeur d'un des déterminants calculés servant à illustrer la quatrième partie.

Dans la deuxième partie, on définit les matrices de Gram et on en étudie quelques propriétés.

Les troisième et quatrième parties sont des applications de la deuxième partie.

PARTIE I

Les résultats de cette partie ne serviront que dans la partie IV.

I.1. Déterminant d_n .

Soit $n \in \mathbb{N}$. Pour $p \in \llbracket 0, n \rrbracket$, on note $A_p = \left(a_{i,j}\right)$ la matrice carrée de $\mathcal{M}_{n-p+1}\left(\mathbb{R}\right)$ dont le coefficient de la ligne i et de la colonne j est égal à $a_{i,j} = \left(\begin{array}{c} p+i+j-2 \\ p+i-1 \end{array} \right)$ avec $\left(i,j\right) \in \llbracket 1, n-p+1 \rrbracket \times \llbracket 1, n-p+1 \rrbracket$.

On note $d_p = \det(A_p)$.

- **I.1.1.** Expliciter les entiers r et s tels que $a_{i,j} = \binom{r}{s}$ pour les quatre coefficients $a_{1,1}$, $a_{1,n-p+1}$, $a_{n-p+1,1}$ et $a_{n-p+1,n-p+1}$.
- **I.1.2.** Pour tout entier naturel $n \ge 2$ calculer les déterminants d_n, d_{n-1} et d_{n-2} .
- **I.1.3.** On suppose que la matrice A_p possède au moins deux lignes. On note L_i la ligne d'indice i.
 - **I.1.3.1** Dans le calcul de d_p on effectue les opérations suivantes : pour i variant de n-p+1 à 2, on retranche la ligne L_{i-1} à la ligne L_i (opération codée : $L_i \leftarrow L_i L_{i-1}$). Déterminer le coefficient d'indice (i,j) de la nouvelle ligne L_i .
 - **I.1.3.2** En déduire une relation entre d_p et d_{p+1} , puis en déduire d_p .

I.2. Déterminants D_n et Δ_n .

Pour $n \in \mathbb{N}$, on note D_n le déterminant de la matrice carrée de $\mathcal{M}_{n+1}(\mathbb{R})$ dont le coefficient de la ligne i et de la colonne j est (i+j)!, les lignes et les colonnes étant indexées de 0 à n.

On note $D_n = \det\left(\left(i+j\right)!\right)$. Avec les mêmes notations, on note $\Delta_n = \det\left(\left(i+j\atop i\right)\right)$ pour $(i,j) \in [\![0,n]\!] \times [\![0,n]\!]$.

- **I.2.1.** Calculer les déterminants D_0 , D_1 , D_2 , Δ_0 , Δ_1 et Δ_2 .
- **I.2.2.** Donner une relation entre D_n et Δ_n .
- **I.2.3.** En déduire Δ_n puis D_n .