EXERCICE 2

Extremums d'une forme quadratique sur la boule unité fermée

On se donne un entier $n \ge 2$. On rappelle que la norme euclidienne usuelle $\|\cdot\|$ sur \mathbb{R}^n est définie par :

$$\forall x \in \mathbb{R}^n, \quad x = (x_1, \dots, x_n), \quad ||x|| = \sqrt{\sum_{k=1}^n x_k^2}.$$

On note $B_n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ la boule unité fermée de \mathbb{R}^n .

On fixe des réels $a_{i,j}$ pour $1 \le i \le j \le n$ et on considère l'application $f: B_n \to \mathbb{R}$ définie par :

$$\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \quad f(x_1,\ldots,x_n) = \sum_{i=1}^n \left(\sum_{j=i}^n a_{i,j} x_i x_j\right) = \sum_{1 \le i \le j \le n} a_{i,j} x_i x_j.$$

L'objectif de cet exercice est d'étudier les extremums de la fonction f sur la partie B_n . On définit la matrice $M_f \in \mathcal{M}_n(\mathbb{R})$ comme la matrice **symétrique** dont les coefficients $(m_{i,j})$ vérifient :

$$\forall (i,j) \in \llbracket 1,n \rrbracket^2, \quad m_{i,j} = \left\{ \begin{array}{ll} a_{i,i} & \mathrm{si} & i=j \\ \\ \frac{a_{i,j}}{2} & \mathrm{si} & i < j. \end{array} \right.$$

Si M est une matrice à coefficients réels, on note M^{T} sa matrice transposée.

Partie I - Étude d'un exemple

Dans cette **partie**, on suppose que n = 2 et que l'application $f : B_2 \to \mathbb{R}$ est définie par :

$$\forall (x_1, x_2) \in B_2, \quad f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1x_2.$$

- **Q11.** Justifier que l'application f admet un maximum et un minimum sur B_2 .
- **Q12.** En étudiant la fonction $t \mapsto f(\cos(t), \sin(t))$, déterminer les extremums de l'application f sur la frontière $S_2 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$ de B_2 .
- **Q13.** Justifier que f est de classe C^1 et déterminer les points critiques de l'application f dans la boule unité ouverte $B_2' = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1\}$ de \mathbb{R}^2 .
- **Q14.** En déduire que le maximum de f sur B_2 est 3 et que le minimum de f sur B_2 est -1.
- **Q15.** Vérifier que la plus grande valeur propre de M_f est égale au maximum de f sur B_2 et que la plus petite valeur propre de M_f est égale au minimum de f sur B_2 .

Partie II - Le cas général

On ne suppose plus dans cette **partie** que n = 2.

On considère un vecteur $x = (x_1, \dots, x_n) \in B_n$ et on note $X = (x_1 \dots x_n)^T \in \mathcal{M}_{n,1}(\mathbb{R})$.

- **Q16.** Montrer que $f(x) = X^{T} M_f X$.
- **Q17.** Justifier que la matrice M_f est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Dans la suite, on note $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ les valeurs propres de M_f comptées avec leur multiplicité et on suppose que $\lambda_1 \leqslant \cdots \leqslant \lambda_n$.

On fixe une matrice **orthogonale** $P \in GL_n(\mathbb{R})$ telle que $M_f = PDP^{-1}$ où :

$$D = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots \\ & & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

On note $Y = P^{-1}X \in \mathcal{M}_{n,1}(\mathbb{R})$.

- **Q18.** Montrer les égalités $Y^{T}Y = X^{T}X = ||x||^{2}$.
- **Q19.** On suppose que $\lambda_1 < 0 < \lambda_n$. Montrer que $\lambda_1 \le Y^T DY \le \lambda_n$ et en déduire que $\lambda_1 \le f(x) \le \lambda_n$.
- **Q20.** En déduire que si $\lambda_1 < 0 < \lambda_n$, alors $\max_{B_n}(f) = \lambda_n$ et $\min_{B_n}(f) = \lambda_1$.
- **Q21.** Dans le cas où $\lambda_1 \ge 0$, déterminer le maximum et le minimum de f sur B_n .

Partie III - Application des résultats

Dans cette **partie**, on suppose que $n \ge 3$ et que l'application $f: B_n \to \mathbb{R}$ est définie par :

$$\forall (x_1, \dots, x_n) \in B_n, \quad f(x_1, \dots, x_n) = \sum_{k=1}^n x_k^2 - \sum_{1 \le i < n} 2x_i x_j.$$

Q22. Déterminer le maximum et le minimum de l'application f sur B_n (on pourra commencer par déterminer le rang de la matrice $M_f - 2I_n$ où I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{R})$).

Exercice II

Soient les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^2 telles que : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) \neq 0$, ainsi que l'équation :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \cdot \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial f}{\partial x}(x,y) \cdot \frac{\partial f}{\partial y}(x,y). \tag{\mathscr{E}}$$

1. (a) Montrer qu'une telle fonction f vérifie l'équation (\mathscr{E}) si et seulement si il existe une fonction réelle a, de classe \mathscr{C}^1 sur \mathbb{R} , telle que :

$$\forall (x,y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial x}(x,y) = a(x) f(x,y).$$

(b) En déduire que les solutions de (\mathscr{E}) ne s'annulant pas sont exactement les fonctions de la forme $(x,y)\mapsto \varphi(x)\,\psi(y)$, où φ et ψ sont des fonctions de classe \mathscr{C}^2 sur \mathbb{R} ne s'annulant pas. Pour une telle solution f de (\mathscr{E}) , y-a-t-il unicité du couple (φ,ψ) ?

Téléchargé gratuitement sur www.Doc-Solus.fr.

E3A Maths B MP 2008 — Énoncé

2/2

(c) Soient g et h deux fonctions de classe \mathscr{C}^2 de \mathbb{R} dans \mathbb{R}^* et telles que g(0) = h(0). Montrer qu'il existe une et une seule solution f de (\mathscr{E}) ne s'annulant pas et telle que :

$$\forall x \in \mathbb{R}, \ f(x,0) = g(x) \ \text{ et } \ \forall y \in \mathbb{R}, \ f(0,y) = h(y).$$

- 2. Dans cette question, f désigne une solution de $\mathscr E$ sur $\mathbb R^2$, strictement positive.
 - (a) Montrer que f présente en (x_0, y_0) un maximum local si et seulement si les fonctions $x \mapsto f(x, y_0)$ et $y \mapsto f(x, y_0)$ présentent respectivement en x_0 et en y_0 un maximum local.
 - (b) En déduire que l'ensemble des points de \mathbb{R}^2 où f présente un maximum local est de la forme $A\times B$, où A et B sont deux parties de \mathbb{R} à préciser.
- 3. Soit maintenant la fonction $F: \mathbb{R}^2 \to \mathbb{R}$ définie par : $\forall (x,y) \in \mathbb{R}^2, \ F(x,y) = (xy)^3 + |xy|^3$.
 - (a) Montrer que F est de classe \mathscr{C}^2 sur \mathbb{R}^2 . (On pourra écrire F comme une composée).
 - (b) Démontrer que F vérifie l'équation (\mathscr{E}).
 - (c) Montrer qu'il n'existe pas de fonctions φ , ψ de \mathbb{R} dans \mathbb{R} telles que :

$$\forall (x, y) \in \mathbb{R}^2, \ F(x, y) = \varphi(x) \psi(y).$$