PARTIE II

Étude de l'existence de J_m

Rappel:
$$J_m = \int_0^{+\infty} \frac{(\sin t)^m}{t} dt$$
 et $\varphi(x) = \int_0^{+\infty} \frac{1 - \cos t}{t^2} e^{-xt} dt$.

II.1/ Étude de
$$\int_0^{\frac{\pi}{2}} \frac{\left(\sin t\right)^m}{t} dt$$
.

Justifier la convergence de l'intégrale généralisée $\int_0^{\frac{\pi}{2}} \frac{\left(\sin t\right)^m}{t} dt$ pour tout entier naturel non nul m. Pour tout entier relatif k tel que l'intégrale généralisée $\int_{\frac{\pi}{2}}^{+\infty} \frac{e^{ikt}}{t} dt$ converge, on note I_k la valeur de cette intégrale.

II.2/ Étude de J_1 .

Justifier l'existence de J_1 et établir une relation entre J_1 et $\varphi(0)$ (on pourra utiliser une intégration par parties, en remarquant que $(1-\cos)'=\sin$).

II.3/ Étude de l'existence de I_k .

Préciser la nature de l'intégrale généralisée I_k selon la valeur de l'entier relatif k (on pourra utiliser une intégration par parties).

II.4/ Étude de la nature de J_m

Pour tout x appartenant à $\left[\frac{\pi}{2}; +\infty\right[$ et tout entier relatif k, on note : $I_k(x) = \int_{\frac{\pi}{2}}^{x} \frac{e^{ikt}}{t} dt$.

II.4.1/ Exprimer, pour tout entier naturel non nul m et pour tout nombre réel x appartenant à $\left[\frac{\pi}{2}; +\infty\right[$, l'intégrale $\int_{\frac{\pi}{2}}^{x} \frac{\left(\sin t\right)^{m}}{t} dt$ à l'aide des intégrales $I_{k}(x)$.

- $\mathbf{II.4.2} / \quad \text{En déduire l'existence de } J_{2p+1} \text{ pour tout entier naturel } p.$
- **II.4.3**/ Quelle est la nature de l'intégrale généralisée $\int_0^{+\infty} \frac{(\sin t)^{2p}}{t} dt$ pour p entier naturel non nul?

PARTIE II

- **1.** Soit f une fonction de \mathcal{C} . Montrer que la fonction $x \mapsto \frac{f(x)}{\sqrt{1-x^2}}$ est intégrable sur -1,1[.
- **2.** Pour $n \in \mathbb{N}$, on note $I_n = \int_{-1}^1 \frac{x^n}{\sqrt{1-x^2}} dx$.
 - **2.1** Calculer I_0 et I_1 .
 - **2.2** Pour $n \ge 2$, donner une relation entre I_n et I_{n-2} (on pourra, entre autre méthode, utiliser le changement de variable $\theta = Arc \cos x$).
 - **2.3** En déduire les valeurs de I_2 et I_4 . Quelle est la valeur de I_{2p+1} pour $p \in \mathbb{N}$?

4. On veut montrer qu'il existe trois réels a_0, a_1, a_2 uniques, tels que pour tout polynôme $P \in \mathcal{H}_5$, on a

(1)
$$\int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^2}} dx = a_0 P\left(\frac{-\sqrt{3}}{2}\right) + a_1 P(0) + a_2 P\left(\frac{\sqrt{3}}{2}\right).$$

4.1 On suppose que l'égalité (1) est satisfaite par tout $P \in \mathcal{R}_5$. En prenant successivement les polynômes P définis par P(x)=1, P(x)=x, $P(x)=x^2$, déterminer les réels a_0,a_1,a_2 .

- **4.2** Montrer que le triplet (a_0, a_1, a_2) trouvé convient pour les polynômes P définis par $P(x) = x^4$ puis $P(x) = x^5$.
 - En déduire que l'égalité (1) est vérifiée pour tout polynôme $P \in \mathcal{R}_5$.
- 5. calcul d'une intégrale.
 - **5.1** Montrer que la fonction $x \mapsto \frac{x^4}{\sqrt{x(1-x)}}$ est intégrable sur [0,1[.
 - **5.2** Calculer l'intégrale $J = \int_0^1 \frac{x^4}{\sqrt{x(1-x)}} dx$, à l'aide du changement de variable t = 2x-1 et de la formule (1).