Espaces vectoriels d'endomorphismes nilpotents

Dans tout le sujet, on considère des \mathbf{R} -espaces vectoriels de dimension finie. Soit E un tel espace vectoriel et u un endomorphisme de E. On dit que u est **nilpotent** lorsqu'il existe un entier $p \geq 0$ tel que $u^p = 0$; le plus petit de ces entiers est alors noté $\nu(u)$ et appelé **nilindice** de u, et l'on notera qu'alors $u^k = 0$ pour tout entier $k \geq \nu(u)$. On rappelle que $u^0 = \mathrm{id}_E$. L'ensemble des endomorphismes nilpotents de E est noté $\mathcal{N}(E)$: on prendra garde au fait qu'il ne s'agit a priori pas d'un sous-espace vectoriel de $\mathcal{L}(E)$!

Un sous-espace vectoriel \mathcal{V} de $\mathcal{L}(E)$ est dit **nilpotent** lorsque tous ses éléments sont nilpotents, autrement dit lorsque $\mathcal{V} \subset \mathcal{N}(E)$.

Une matrice triangulaire supérieure est dite **stricte** lorsque tous ses coefficients diagonaux sont nuls. On note $T_n^{++}(\mathbf{R})$ l'ensemble des matrices triangulaires supérieures strictes de $M_n(\mathbf{R})$. On admet qu'il s'agit d'un sous-espace vectoriel de $M_n(\mathbf{R})$, de dimension $\frac{n(n-1)}{2}$.

Dans un sujet antérieur du concours (PSI Maths II 2016), le résultat suivant a été établi :

Théorème A.

Soit E un \mathbf{R} -espace vectoriel de dimension n>0, et \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$. Alors, dim $\mathcal{V} \leq \frac{n(n-1)}{2}$.

Le théorème **A** est ici considéré comme acquis. L'objectif du présent sujet est de déterminer les sous-espaces vectoriels nilpotents de $\mathcal{L}(E)$ dont la dimension est égale à $\frac{n(n-1)}{2}$. Plus précisément, on se propose d'établir le résultat suivant (Gerstenhaber, 1958) :

Théorème B.

Soit E un \mathbf{R} -espace vectoriel de dimension n > 0, et \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$ de dimension $\frac{n(n-1)}{2}$. Il existe alors une base de E dans laquelle tout élément de \mathcal{V} est représenté par une matrice triangulaire supérieure stricte.

Les trois premières parties du sujet sont largement indépendantes les unes des autres. La partie I est constituée de généralités sur les endomorphismes nilpotents. Dans la partie II, on met en évidence un mode de représentation des endomorphismes de rang 1 d'un espace euclidien. Dans la partie III, on établit deux résultats généraux sur les sous-espaces vectoriels nilpotents : une identité sur les traces (lemme \mathbf{C}), et une condition suffisante pour que les éléments d'un sous-espace nilpotent non nul possèdent un vecteur propre commun (lemme \mathbf{D}). Dans l'ultime partie IV, les résultats des parties précédentes sont combinés pour établir le théorème \mathbf{B} par récurrence sur la dimension de l'espace E.

I Généralités sur les endomorphismes nilpotents

Dans toute cette partie, on fixe un espace vectoriel réel E de dimension n > 0. Soit $u \in \mathcal{N}(E)$. On choisit une matrice carrée M représentant l'endomorphisme u.

1. Démontrer que M est semblable à une matrice complexe triangulaire supérieure, établir que les coefficients diagonaux de cette dernière sont nuls, et en déduire que tr $u^k = 0$ pour tout $k \in \mathbb{N}^*$.

On fixe une base $\mathbf{B} = (e_1, \dots, e_n)$ de E. On note $\mathcal{N}_{\mathbf{B}}$ l'ensemble des endomorphismes de E dont la matrice dans \mathbf{B} est triangulaire supérieure stricte.

- 2. Justifier que $\mathcal{N}_{\mathbf{B}}$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\frac{n(n-1)}{2}$, et mettre en évidence dans $\mathcal{N}_{\mathbf{B}}$ un élément nilpotent de nilindice n. On pourra introduire l'endomorphisme u de E défini par $u(e_i) = e_{i-1}$ pour tout $i \in [2, n]$, et $u(e_1) = 0$.
- 3. Soit $u \in \mathcal{L}(E)$. On se donne deux vecteurs x et y de E, ainsi que deux entiers $p \geq q \geq 1$ tels que $u^p(x) = u^q(y) = 0$, $u^{p-1}(x) \neq 0$ et $u^{q-1}(y) \neq 0$. Montrer que la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre, et que si $(u^{p-1}(x), u^{q-1}(y))$ est libre alors $(x, u(x), \dots, u^{p-1}(x), y, u(y), \dots, u^{q-1}(y))$ est libre.
- 4. Soit $u \in \mathcal{N}(E)$, de nilindice p. Déduire de la question précédente que $p \leq n$ et que si $p \geq n-1$ et $p \geq 2$ alors $\operatorname{Im} u^{p-1} = \operatorname{Im} u \cap \operatorname{Ker} u$ et $\operatorname{Im} u^{p-1}$ est de dimension 1.

II Endomorphismes de rang 1 d'un espace euclidien

On considère ici un espace vectoriel euclidien (E, (- | -)). Lorsque a désigne un vecteur de E, on note

$$\varphi_a: \begin{cases} E & \longrightarrow \mathbf{R} \\ x & \longmapsto (a \mid x). \end{cases}$$

5. Calculer la dimension de $\mathcal{L}(E, \mathbf{R})$ en fonction de celle de E. Montrer que $a \mapsto \varphi_a$ définit un isomorphisme de E sur $\mathcal{L}(E, \mathbf{R})$.

Étant donné $a \in E$ et $x \in E$, on notera désormais $a \otimes x$ l'application de E dans lui-même définie par :

$$\forall z \in E, \ (a \otimes x)(z) = (a \mid z).x$$

- 6. On fixe $x \in E \setminus \{0\}$. Montrer que l'application $a \in E \mapsto a \otimes x$ est linéaire et constitue une bijection de E sur $\{u \in \mathcal{L}(E) : \operatorname{Im} u \subset \operatorname{Vect}(x)\}$.
- 7. Soit $a \in E$ et $x \in E \setminus \{0\}$. Montrer que $\operatorname{tr}(a \otimes x) = (a \mid x)$.

III Deux lemmes

On considère ici un espace euclidien (E, (- | -)) de dimension n > 0. On rappelle que l'on a démontré à la question 4 que le nilindice d'un élément de $\mathcal{N}(E)$ est toujours inférieur ou égal à n. Soit \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$ contenant un élément non nul. On note

$$p := \max_{u \in \mathcal{V}} \nu(u),$$

appelé nilindice générique de \mathcal{V} . On a donc $p \geq 2$.

On introduit le sous-ensemble \mathcal{V}^{\bullet} de E formé des vecteurs appartenant à au moins un des ensembles $\operatorname{Im} u^{p-1}$ pour u dans \mathcal{V} ; on introduit de plus le sous-espace vectoriel engendré

$$K(\mathcal{V}) := \operatorname{Vect}(\mathcal{V}^{\bullet}).$$

Enfin, étant donné $x \in E$, on pose

$$\mathcal{V}x := \{ v(x) \mid v \in \mathcal{V} \}.$$

L'objectif de cette partie est d'établir les deux résultats suivants :

Lemme C. Soit u et v dans \mathcal{V} . Alors $\operatorname{tr}(u^k v) = 0$ pour tout entier naturel k.

Lemme D. Soit x dans $\mathcal{V}^{\bullet} \setminus \{0\}$. Si $K(\mathcal{V}) \subset \operatorname{Vect}(x) + \mathcal{V}x$, alors v(x) = 0 pour tout v dans \mathcal{V} .

Dans les questions 8 à 11, on se donne deux éléments arbitraires u et v de \mathcal{V} .

8. Soit $k \in \mathbb{N}^*$. Montrer qu'il existe une unique famille $(f_0^{(k)}, \dots, f_k^{(k)})$ d'endomorphismes de E telle que

$$\forall t \in \mathbf{R}, \ (u+tv)^k = \sum_{i=0}^k t^i f_i^{(k)}.$$

Montrer en particulier que $f_0^{(k)} = u^k$ et $f_1^{(k)} = \sum_{i=0}^{k-1} u^i v u^{k-1-i}$.

Pour l'unicité, on pourra utiliser une représentation matricielle.

- 9. À l'aide de la question précédente, montrer que $\sum\limits_{i=0}^{p-1}u^{i}vu^{p-1-i}=0.$
- 10. Étant donné $k \in \mathbb{N}$, donner une expression simplifiée de $\operatorname{tr}(f_1^{(k+1)})$, et en déduire la validité du lemme \mathbb{C} .

- 11. Soit $y \in E$. En considérant, pour un $a \in K(\mathcal{V})^{\perp}$ quelconque, la fonction $t \in \mathbf{R} \mapsto (a \mid (u+tv)^{p-1}(y))$, démontrer que $f_1^{(p-1)}(y) \in K(\mathcal{V})$. À l'aide d'une relation entre $u(f_1^{(p-1)}(y))$ et $v(u^{p-1}(y))$, en déduire que $v(x) \in u(K(\mathcal{V}))$ pour tout $x \in \text{Im } u^{p-1}$.
- 12. Soit $x \in \mathcal{V}^{\bullet} \setminus \{0\}$ tel que $K(\mathcal{V}) \subset \operatorname{Vect}(x) + \mathcal{V}x$. On choisit $u \in \mathcal{V}$ tel que $x \in \operatorname{Im} u^{p-1}$. Étant donné $y \in K(\mathcal{V})$, montrer que pour tout $k \in \mathbf{N}$ il existe $y_k \in K(\mathcal{V})$ et $\lambda_k \in \mathbf{R}$ tels que $y = \lambda_k x + u^k(y_k)$. En déduire que $K(\mathcal{V}) \subset \operatorname{Vect}(x)$ puis que

v(x) = 0 pour tout $v \in \mathcal{V}$.