1 Produit de Cauchy de deux séries absolument convergentes

Définition 1

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes complexes . On appelle produit de Cauchy de ces deux séries la séries

 $\sum_{n \geq 0} w_n$ dont le terme général est défini par

$$\forall n \in \mathbb{N}, \quad w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{p+q=n} u_p v_q$$

Théorème

Si les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ sont absolument convergentes, alors la série produit de Cauchy $\sum_{n\geq 0} w_n$ de ces deux séries converge absolument et

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Corollaire 1

L'exponentielle complexe $z\longmapsto \exp(z)=\sum_{n=0}^{+\infty}z^n/n!$ satisfait la relation suivante

$$\forall z, z' \in \mathbb{C}, \qquad \exp(z + z') = \exp(z) \exp(z')$$

2 Rayon de convergence

2.1 Définition

Définition 2

On appelle série entière toute série de fonctions $\sum_{n\geq 0} f_n$ où pour tout n, f_n est de la forme $z \longmapsto a_n z^n$ avec $a_n \in \mathbb{C}$.

Remarque 1

En général, on utilise l'abus de notation $\sum_{n\geq 0} a_n\,z^n$ directement pour désigner la série. De plus, lorsqu'on se restreint à une variable réelle, on utilise la variable x plutôt que z.

Exemple 1

- Un polynôme est la somme d'une série entière
- La fonction $z \longmapsto \frac{1}{1-z}$ est la somme de la série entière $\sum\limits_{n \geq 0} z^n$ sur B(0,1).
- La fonction exponentielle est la somme sur $\mathbb C$ de la série entière $\sum\limits_{n\geq 0}z^n/n!.$

(Proposition 1 (Lemme d'Abel))

Soit $\sum_{n\geq 0} a_n z^n$ une série entière. Si ρ est un réel tel que la suite $(a_n \rho^n)_{n\in\mathbb{N}}$ est bornée, alors la série $\sum_{n\geq 0} a_n z^n$ est absolument convergente pour tout $z\in B(0,\rho)$.

Définition 3

Soit $\sum_{n>0} a_n z^n$ une série entière. On note

$$I_a = \{ \rho \in \mathbb{R}_+, \ (a_n \rho^n)_{n \in \mathbb{N}} \text{ est borné} \}$$

Alors, I_a est un intervalle contenant 0 dont la borne supérieure dans $\overline{\mathbb{R}}$ est appelée le rayon de convergence de la série entière. On appelle disque (resp. intervalle) ouvert de convergence l'ensemble des complexes (resp. réels) de module (resp. valeur absolue) strictement inférieure à R.

Théorème 2

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R. Alors,

- \bullet Si $R<+\infty,$ alors pour tout z de module >R, $\sum\limits_{n\geq 0}a_{n}z^{n}$ diverge grossièrement.
- Si R > 0, alors pour tout z de module < R, $\sum_{n \ge 0} a_n z^n$ est absolument convergente.

Remarque 2

Le théorème ne précise rien quand à la nature de $\sum_{n\geq 0} a_n z^n$ lorsque |z|=R. En fait, presque toutes les situations sont possibles.

Corollaire 2

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R et $z_0\in\mathbb{C}$.

- Si $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée ou si $\sum_{n>0} a_n z_0^n$ est convergente, alors $R \geq |z_0|$.
- Si $(a_n z_0^n)_{n \in \mathbb{N}}$ n'est pas bornée ou si $\sum_{n \geq 0} a_n z_0^n$ est divergente, alors $R \leq |z_0|$.

Proposition 2

- La série entière $\sum_{n\geq 0} \frac{z^n}{n!}$ a pour rayon de convergence $+\infty$.
- Pour tout réel α , $\sum_{n>0} z^n/n^{\alpha}$ a pour rayon de convergence 1.

Remarque 3

On s'intéresse à la convergence de $\sum\limits_{n\geq 0}z^n/n^\alpha$ au bord du disque ouvert de convergence :

- si $\alpha = 0$, la série diverge pour tout z de module 1;
- si $\alpha = 2$, la série converge pour tout z de module 1;
- si $\alpha = 1$, la série converge pour tout z de module 1 sauf si z = 1.

Proposition 3 (Comparaison de RDC de deux séries entières)

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Alors,

- Si $a_n = O(b_n)$, alors $R_a \ge R_b$;
- Si $|a_n| \sim |b_n|$, alors $R_a = R_b$.

Séries entières 3

Proposition 4 (Règle de d'Alembert pour les séries entières)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière. On suppose que $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas et que le quotient $|a_{n+1}|/|a_n|$ admet une limite ℓ dans $\overline{\mathbb{R}}$. Alors, le rayon de convergence de la série vaut $1/\ell$ avec les conventions $1/+\infty=0$ et $1/0=+\infty$.

Remarque 4

- La réciproque est bien entendu complètement fausse.
- Cette technique ne doit être appliquée qu'aux cas pratiques (ie a_n donné explicitement, contrairement à un exo théorique).
- Attention à ne pas l'appliquer à des séries **lacunaires** c'est-à-dire où la suite $(a_n)_{n\in\mathbb{N}}$ s'annule régulièrement. L'erreur typique est de l'appliquer par exemple à une série de la forme $\sum_{n\geq 0} a_n z^{2n}$. Pour ce type d'exemple, on repasse par la preuve et la version de d'Alembert pour les séries **numériques**.

Exemple 2

Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n\geq 0} \frac{n}{1\cdot 3\cdots (2n+1)} z^n \qquad \qquad \sum_{n\geq 1} \frac{(-1)^n}{2n-1} \binom{2n}{n} z^{3n}$$

Exemple 3 (Exemple à la con)

Pour tout entier n, on note $|n|_7$ le nombre de 7 dans l'écriture de n en base 10. Alors, $\sum_{n\geq 0} |n|_7 z^n$ a pour rayon de convergence 1.

De la même manière, si l'on note π_n la n-ième décimale de π , la série entière $\sum_{n\geq 1} \pi_n x^n/n^2$ a pour rayon de convergence 1.

Proposition 5

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Alors, les séries entières $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} n \, a_n$ ont mêmes rayons de convergence.

Remarque 5 (Invariance du RDC par multiplication par une fraction rationnelle)

Plus généralement, si F une fraction rationnelle à coefficients dans \mathbb{C} dont le dénominateur ne s'annule pas sur \mathbb{N} et $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R_a , alors la série entière $\sum_{n\geq 0} F(n)a_n z^n$ à également R_a pour rayon de convergence.

Exercice 1

Soit $\sum a_n z^n$ une série entière de rayon de convergence $R \in \mathbb{R}_+^*$. Déterminer celui de la série $\sum a_n z^{n^2}$.

2.2 Opérations sur les séries entières

Définition 4

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières. On appelle produit de Cauchy de ces deux séries la série entière $\sum_{n\geq 0} c_n z^n$ où $(c_n)_{n\in\mathbb{N}}$ est définie par

$$\forall n \in \mathbb{N}, \qquad c_n = \sum_{k=0}^n a_k b_{n-k}$$

Exemple 4

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe et $(A_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série $\sum_{n\geq 0} a_n$. Alors la série entière

 $\sum_{n\geq 0} A_n z^n \text{ est le produit de Cauchy des séries } \sum_{n\geq 0} a_n z^n \text{ et } \sum_{n\geq 0} z^n.$

Proposition 6

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières convergeant toutes deux dans le disque ouvert B(0,r) de somme respectives f et g. Alors,

- Pour tout $\lambda \in \mathbb{C}$, la série entière $\sum_{n\geq 0} (\lambda a_n + b_n) z^n$ converge sur B(0,r) et a pour somme $\lambda f + g$.
- Le produit $\sum_{n\geq 0} c_n z^n$ des deux séries entières est convergent sur B(0,r) et a pour somme $f\cdot g$.

Corollaire 3

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b .

- Le rayon de convergence R_s de $\sum_{n\geq 0} (a_n+b_n)z^n$ est supérieur ou égal à $\min(R_a,R_b)$. Il y a égalité si $R_a\neq R_b$.
- Le rayon de convergence R_p du produit de Cauchy des deux séries est supérieur ou égal à $\min(R_a, R_b)$.

Remarque 6

On ne peut rien dire de plus

- Si $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont opposées, alors le rayon de convergence R_s de la somme des séries entières vaut $+\infty$
- Si $(a_n)_{n\in\mathbb{N}}$ est constante égale à 1, et si $\sum_{n\geq 0}b_nz^n=1-z$, alors le produit de Cauchy des séries entières vaut 1 qui a un rayon de convergence infini, strictement supérieur à celui de $\sum_{n\geq 0}a_n$.

3 Régularité de la somme d'une série entière de la variable réelle

3.1 Continuité

Théorème 3

Une série entière de rayon de convergence R > 0 converge normalement sur tout segment [-r; r] avec r < R.

Remarque 7

On n'a pas nécessairement la convergence normale sur [-R;R] comme pour l'exemple $\sum_{n\geq 0} x^n$ (sauf si $\sum_{n\geq 0} a_n$ est absolument convergente).

Proposition 7

La somme d'une série entière de rayon de convergence R > 0 est continue sur l'intervalle]-R;R[.

Exercice 2 (Convergence au bord du domaine)

Soit $\sum_{n\geq 0} a_n x^n$ une série entière de rayon de convergence $R\in \mathbb{R}_+^*$ et de somme f.

- Si la série $\sum_{n\geq 0} |a_n| R^n$ converge, alors f est continue sur [-R;R].
- Si $\sum_{n\geq 0} a_n R^n$ converge (resp. $\sum_{n\geq 0} a_n (-R)^n$), alors f est continue sur [0;R] (resp. sur [-R;0]).
- Plus généralement, si $\sum a_n R^n$ converge, alors pour tout $\alpha \in]0; \pi/2[$,

$$\lim_{\substack{z \to R \\ z \in D_{\alpha}}} f(z) = \sum_{n=0}^{+\infty} a_n R^n$$

où l'on a noté $D_{\alpha}=B(0,1)\cap \left\{1-\rho e^{i\theta}, \rho>0, |\theta|\leq \alpha\right\}.$

Remarque 8

Réciproquement, si f est la somme de la série entière $\sum_{n\geq 0} a_n \, x^n$ de rayon de convergence $R\in \mathbb{R}_+^*$, et si f(x) a une limite ℓ lorsque x tend vers R, on peut se poser légitimement la question :

« La série numérique $\sum\limits_{n>0}^{+\infty}a_n\,R^n$ est-elle convergente et sa somme est-elle égale à $\ell\,?$ »

La réponse est non comme le montre l'exemple $a_n = (-1)^n$ pour tout entier n. On a besoin d'hypothèse supplémentaires pour conclure. Le résultat devient vrai si l'on suppose l'une des hypothèses suivantes :

- Pour tout entier n, a_n est un réel positif.
- Lorsque n tend vers $+\infty$, $a_n = o(1/n)$ (théorème taubérien faible).
- Lorsque n tend vers $+\infty$, $a_n = O(1/n)$ (théorème taubérien fort).

Exemple 5

On vérifiera un peu plus tard que

$$\forall x \in]-1; 1[, \quad \ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$$

On déduit alors que

$$\ln 2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

3.2 Dérivation et intégration terme à terme

Proposition 8

Soit $\sum_{n\geq 0} a_n x^n$ une série entière de la variable réelle, de rayon de convergence R>0 et de somme f.

• On peut intégrer terme à terme sur tout segment [a;b] inclus dans]-R;R[, et ainsi

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} a_n \int_{a}^{b} t^n dt$$

• En particulier, pour tout $x \in [-R; R]$,

$$\int_0^x f(t) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^n$$

Proposition 9

Avec les mêmes notations, f est de classe \mathcal{C}^{∞} sur]-R; R[et pour tout entier k et tout $x \in]-R$; R[,

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k}$$

= $\sum_{n=0}^{+\infty} (n+k)\cdots(n+1)a_{n+k} x^n$

En particulier, $f^{(k)}(0) = a_k k!$.

Remarque 9

Pour conclure, on peut intégrer et dériver terme à terme et à volonté sur l'intervalle ouvert de convergence!

Exemple 6

$$\forall x \in]-1; 1[, \frac{1}{(1-x)^{k+1}} = \sum_{n=0}^{+\infty} {n+k \choose n} x^n$$

4 Developpement en série entière au voisinage de 0 d'une fonction d'une variable réelle

4.1 Definitions

(Définition 5

Soit I un intervalle de $\mathbb R$ ouvert centré en 0 et $f:I\longmapsto \mathbb K$. On dit que f est développable en série entière sur I s'il existe une série entière $\sum_{n\geq 0}a_nx^n$ telle que

$$\forall x \in I, \qquad f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Remarque 10

Plus généralement, soit I un intervalle ouvert de \mathbb{R} , x_0 un point de I et $f:I\longmapsto\mathbb{K}$. On dit que f est développable en série entière au voisinage de x_0 s'il existe une série entière $\sum_{n\geq 0}a_nx^n$ et un voisinage \mathcal{V} de x_0 tels que

$$\forall x \in \mathcal{V}, \qquad f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

Proposition 10

Soit I un intervalle ouvert de \mathbb{R} contenant 0. L'ensemble des fonctions définies et développables en série entière sur I est un sous-espace vectoriel de $\mathcal{C}^{\infty}(I,\mathbb{K})$, stable par produit.

Remarque 11

Le développement en série entière d'un rapport ou d'une composée se traite au cas par cas. Il n'y a pas d'énoncé général au programme.

Théorème 4 (Formule de Taylor avec reste intégral)

Soit I un intervalle de \mathbb{R} et f une application de classe \mathcal{C}^{n+1} sur I. Alors pour tous réels a et b dans I,

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

Séries entières 7

Corollaire 4

Soit I un intervalle ouvert de \mathbb{R} contenant 0 et $f: I \longmapsto \mathbb{K}$ de classe \mathbb{C}^{∞} . Pour que f soit développable en série entière sur I, il faut et il suffit que

$$\forall x \in I, \qquad \lim_{n \to +\infty} \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t = 0$$

et dans ce cas, le développement en série entière de f coïncide avec sa série de Taylor

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Le rayon de convergence R est alors tel que $I \subset]-R; R[.$

Corollaire 5

Si une fonction f de classe C^{∞} est développable en série entière sur un intervalle I, alors son développement est unique. Autrement dit, si $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} b_n x^n$ sont deux séries entières convergeant toutes deux sur I et telles que

$$\forall x \in I, \qquad f(x) = \sum_{n=0}^{+\infty} a_n \, x^n = \sum_{n=0}^{+\infty} b_n \, x^n$$

alors $a_n = b_n$ pour tout entier n.

Remarque 12

Plus généralement, on peut démontrer l'unicité des coefficients d'une série entière de la variable complexe avec des hypothèses assez souples. En effet, il suffit d'avoir l'égalité

$$\sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} b_n z^n$$

sur un voisinage de 0 (et même simplement pour une suite $(z_p)_{p\in\mathbb{N}}$ de complexes de limite nulle) pour pouvoir conclure que $a_n = b_n$ pour tout entier n.

(Corollaire 6)

Soit $\sum_{n\geq 0} a_n x^n$ une série entière de la variable réelle convergeant sur un intervalle réel de la forme]-r;r[et de somme f. Alors, si f est paire (resp. impaire), on a b_{2n+1} (resp. b_{2n}) nul pour tout entier n.

Remarque 13

- Pour montrer qu'une fonction est développable en série entière, on se contentera la plupart du temps d'une majoration (grossière) de $f^{(n)}$ sur I. Par exemple, s'il existe $\delta > 0$ et $A \in \mathbb{R}_+$ tels que $||f^{(n)}||_{\infty} = O(A^n)$, alors f est développable en série entière sur $]-\delta; \delta[$.
- Il existe des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} qui ne sont pas développables en série entière au voisinage de 0. La série de Taylor de la fonction \mathcal{C}^{∞}

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \exp(-1/x) & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

est la série nulle qui n'est donc pas égale à f.

4.2 Développements en série entière usuels

Proposition 11 (Fonctions exponentielles et circulaires)

• (Fonctions exponentielles) Pour tout réel x, on a

$$\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

puis

$$ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$
 et $sh(x) \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$

• (Fonctions circulaires) Pour tout réel x, on a

$$\cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad \text{et} \qquad \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Remarque 14

On peut montrer en exercice que la fonction tan admet également un développement en série entière sur $]-\pi/2;\pi/2[$ mais tout résultat sur le quotient de deux fonctions développables en série entière est horsprogramme.

$\{ \text{Corollaire } 7 \}$

L'exponentielle complexe (définie comme la somme de la série entière ci-dessus) satisfait la relation

$$\forall a, b \in \mathbb{R}, \qquad \exp(a+ib) = e^a (\cos b + i \sin b)$$

Proposition 12 (Séries géométrique et conséquences)

Par substitution et intégration terme à terme de $\sum_{n\geq 0} x^n$, on obtient les développements en série suivants pour tout $x\in]-1;1[$:

$$-\ln(1-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} \qquad \text{d'où} \qquad \ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

$$\operatorname{argth} x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$$
 et $\operatorname{arctan} x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$

Proposition 13 (Série du binôme)

Pour tout réel α et tout $x \in]-1; 1[$, on a

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n$$

Le rayon de convergence de la série vaut $+\infty$ si α est un entier positif, et 1 sinon.

Série de fonctions de la variable complexe

Remarque 15

Les fonctions étudiées dans le chapitre « série de fonctions » sont définies sur $I \subset \mathbb{R}$ et à valeurs dans \mathbb{C} . Les notions de convergence simple, normale, de continuité de la somme s'étendent naturellement à des fonctions de C dans C (avec le cours sur les espaces vectoriels normés). En revanche, la notion de dérivée d'une fonction de $\mathbb C$ dans $\mathbb C$ n'est pas au programme. On se contente donc des éléments suivants :

- Soit \mathcal{D} une partie de \mathbb{C} et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur \mathcal{D} et à valeurs dans \mathbb{C} .
 - o On dit que la série $\sum_{n\geq 0} f_n$ converge simplement sur \mathcal{D} si $\sum_{n\geq 0} f_n(z)$ converge pour tout z de \mathcal{D} .
 - o On dit que la série converge normalement si f_n est bornée sur \mathcal{D} et si $\sum_{n>0} ||f_n||_{\infty}$ converge.
- La convergence normale implique à nouveau la convergence simple.
- Si $\sum_{n\geq 0} f_n$ converge normalement sur \mathcal{D} , sa somme est continue sur ce même domaine.

Proposition 14

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de la variable complexe de rayon de convergence $R\in \overline{\mathbb{R}}$. Alors, la somme de la série est continue sur le disque ouvert B(0,R) et sur \mathbb{C} si $R=+\infty$.

Compléments: applications

Techniques de développements en série entière

Cas simple: fractions rationnelles

On effectue une décomposition en éléments simples dans $\mathbb{C}[X]$ puis on utilise le résultat de la remarque en fin de section 3

Exemple 7
$$\forall x \in]-2; 2[, \qquad \frac{1}{(x-2)(x-3)} = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}}\right) x^n$$

Intégration/dérivation

L'idée générale est la même que pour les développements limités : on cherche un développement en série de la dérivée que l'on intègre terme à terme.

Exemple 8
$$\forall x \in \left] \sqrt{3} - 2; \sqrt{3} + 2 \right[, \qquad \arctan x = \frac{\pi}{3} - \sum_{n=1}^{+\infty} \frac{(-1)^n}{n \cdot 2^n} \sin\left(\frac{n\pi}{6}\right) x^n$$

Produit de Cauchy

Si f et g sont DSE au voisinage de 0, notons R_1 et R_2 les rayons de convergence des séries associées. Alors, $f \cdot g$ est DSE avec un rayon de convergence au moins $\min(R_1, R_2)$. Les coefficients sont donnés par la formule du produit de Cauchy (pas souvent simplifiable).

Exemple 9
$$\forall x \in]-1; 1[, \quad \arctan(x)^2 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} \left(\sum_{k=0}^n \frac{1}{2k+1}\right) x^{2n+2}$$

Séries entières 10

Equation différentielle

- 1. On commence par justifier que f est DSE au voisinage de 0.
- 2. On cherche alors une équation différentielle satisfaite par f à coefficients polynomiaux.
- 3. En substituant à f l'expression $\sum_{n=0}^{+\infty} a_n x^n$ et à ses dérivées les dérivées terme à terme, on obtient par unicité d'un DSE une relation de récurrence sur $(a_n)_{n\in\mathbb{N}}$ que l'on résout.

Exercice 3 (Mines)

Donner une expression simple de $f: x \longmapsto \int_0^{+\infty} \operatorname{sh}(x\sqrt{t}) e^{-t} dt$

Note: Monter que xf'(x) = -2f(x) + 2f''(x) par IPP. On peut aussi intégrer terme à terme et utiliser les propriétés de la fonction Γ pour simplifier les coefficients du DSE.

6.2 Calculs de sommes de séries numériques

Soit $\sum_{n\geq 0} a_n$ une série convergence. On cherche à calculer la somme de cette série. A cet effet, on peut introduire la série entière $\sum_{n\geq 0} a_n x^n$ dont on note f la somme.

- Si le rayon de convergence est > 1, alors $\sum_{n=0}^{+\infty} a_n = f(1)$ directement.
- Si le rayon de convergence vaut 1, on est dans un cas de convergence au bord et f est définie et continue au bord : le résultat est à nouveau valable.

Il reste maintenant à calculer f ce qui revient à faire l'exact inverse d'un développement en série : exprimer la somme d'une série entière à l'aide de fonctions usuelles. Ce n'est pas toujours possible, il n'y a pas de méthode générale donc on se contente d'exemples.

• Coefficients polynomiaux :

Pour toute série entière de la forme $\sum_{n=0}^{+\infty} P(n)z^n$ où P est un polynôme, on décompose dans P la base $\left(\binom{X+k}{k}\right)_{k\in\mathbb{N}}$ de $\mathbb{K}[X]$. De la même manière, on utilisera cette fois la base $(X(X-1)\cdots(X-k+1))_{k\in\mathbb{N}}$ pour une série de la forme $\sum_{n=0}^{+\infty} P(n)z^n/n!$ avec $P\in\mathbb{K}[X]$.

Exemple 10
$$\forall x \in]-1; 1[, \qquad \sum_{n=0}^{+\infty} (2n-1)^2 x^n = \frac{9x^2 - 2x + 1}{(1-x)^3}$$

$$\forall x \in \mathbb{R}, \qquad \sum_{n=0}^{+\infty} \frac{n^2 + n + 1}{n!} x^n = (x+1)^2 e^x$$

• Equation différentielle :

On fait l'inverse de ce qui a été fait à la partie précédente. Etant donné la suite $(a_n)_{n\in\mathbb{N}}$, on cherche une relation de récurrence satisfaite par cette suite que l'on traduit par une équation différentielle. Il ne reste plus qu'à résoudre cette dernière.

• Bidouillage

Exercice 4 (Mines)

Déterminer le rayon de convergence et calculez la somme de la série entière $\sum_{n\geq 0} \frac{z^n}{(n+2)n!}$.

Appliquons maintenant la méthode sur l'exemple suivant.

Exercice 5

Montrer que pour tout $\theta \in]0; 2\pi[$

$$\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} = -\ln(2\sin(\theta/2)) \qquad \text{et} \qquad \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} = \frac{\pi - \theta}{2}$$

6.3 Calculs de suites récurrentes

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels ou complexes définie par une relation de récurrence quelconque. On cherche à déterminer une expression de u_n en fonction de n. A cet effet,

- On introduit la série entière $\sum_{n\geq 0} a_n x^n$ appelée série génératrice (ordinaire) de la suite, (ou dans certains cas la série exponentielle $\sum_{n\geq 0} a_n x^n/n!$);
- On utilise la relation de récurrence pour en déduire une équation (algébrique ou différentielle) satisfaite par la somme f de cette série entière;
- On résout l'équation pour trouver une expression de f;
- \bullet On développe f en série entière pour retrouver l'expression de ses coefficients et conclure.

Exercice 6

Pour tout entier n, on appelle B_n le n-ième nombre de Bell, qui énumère le nombre de partitions de $\{1, 2, ..., n\}$, c'est-à-dire de décompositions de cet ensemble en parties non vides et deux à deux disjointes. Montrer que la suite $(B_n)_{n\in\mathbb{N}}$ satisfait la relation de récurrence

$$\forall n \in \mathbb{N}, \qquad B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k}$$

et en déduire que

$$B_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{n^k}{k!}$$