Nature et calcul d'intégrales impropres

Etudier la convergence des intégrales suivantes :

(a)
$$\int_0^1 \frac{\ln t}{1-t} \, \mathrm{d}t$$

(b)
$$\int_0^{+\infty} \ln \ln t \, dt$$

(a)
$$\int_0^1 \frac{\ln t}{1-t} dt$$
 (b) $\int_0^{+\infty} \ln t h t dt$ (c) $\int_0^1 \frac{\cos \sqrt{t} - \cosh \sqrt{t}}{t^{3/2}} dt$ (d) $\int_{-\infty}^{+\infty} \frac{dt}{e^{-t} + t^2 e^t}$

(d)
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{e^{-t} + t^2 e^t}$$

_____ (*) _____

- (a). A quelle condition sur $\alpha \in \mathbb{R}$ l'intégrale $I(\alpha) = \int_0^{+\infty} \frac{\arctan x}{x^{\alpha}} dx$ est-elle convergente?
- (b). Calculer I(3/2), en admettant (ou en démontrant) que $\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^4} = \frac{\pi}{2\sqrt{2}}$

_____(*) _____

Justifier la convergence et calculer la valeur de $\int_0^{\pi/2} \cos x \ln(\tan x) dx$.

Justifier la convergence et calculer la valeur de $\int_{1}^{2} \frac{t \ln t}{(t^2-1)^{3/2}} dt$.

____ (*) _____

Calculer $\int_0^1 \frac{\mathrm{d}x}{2 + |1/x|}$.

- (a). Discuter suivant la valeur du paramètre $\alpha \in \mathbb{R}$ la convergence de l'intégrale $I(\alpha) = \int_{\alpha}^{\pi/2} (\tan x)^{\alpha} dx$.
- (b). Etablir une relation entre $I(\alpha)$ et $I(-\alpha)$.
- (c). A l'aide du changement de variable $u = \sqrt{\tan x}$, et de la valeur de l'intégrale donnée en 3.(b), calculer I(1/2).
- (d). Montrer que $\frac{\pi}{2n} \sum_{n \to +\infty}^{n-1} \sqrt{\tan(k\pi/2n)} \xrightarrow[n \to +\infty]{} I(1/2)$.

_____ (**) _____ Mines PC 2013

Nature et calcul de $\int_{-\infty}^{+\infty} \frac{dt}{(1+t^2)\sqrt{4+t^2}}?$

9

_____ (**) _____ X PC 2013

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue, intégrable et dérivable en 0.

- (a). Montrer que $x \mapsto f(x)/x$ est intégrable sur $[1; +\infty[$.
- (b). Justifier l'existence et donner la valeur en fonction de $\alpha, \beta > 0$ de $\int_{\mathbb{R}^{+*}} \frac{f(\beta t) f(\alpha t)}{t} dt$.
- (c). Calculer $\int_0^1 \frac{t-1}{\ln t} dt$.

10

Soit $(u_n)_{n\in\mathbb{N}}$ définie par

 $u_0 > 0$ et $\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n + 2\sqrt{u_n}\sqrt{1 + u_n}$

Montrer que $\int_{x}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = 2 \int_{x=-\infty}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}}$ et en déduire $\lim_{n \to +\infty} 4^{-n} u_n$.

Intégrabilité, semi-convergence

L'application $t \longmapsto \cos^2 t$ est-elle intégrable sur \mathbb{R}^+ ? Même question pour $t \longmapsto \frac{\cos^2 t}{t}$ sur $[1; +\infty[$.

Etudier l'intégrabilité de $x \mapsto 1 - \operatorname{th}^{\alpha} x$ sur $]0; +\infty[$ en fonction du réel α .

Montrer que l'intégrale $\int_0^{+\infty} x \sin(x^3) dx$ est convergente mais pas absolument convergente.

14

Soit f continue et intégrable sur \mathbb{R}^+ et $\alpha > 0$. On note

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$
$$t \longmapsto f\left(\left|t - \frac{\alpha}{t}\right|\right)$$

Montrer que g est intégrable sur \mathbb{R}^{+*} et que $\int_{0}^{+\infty} g(t) dt = \int_{0}^{+\infty} f(t) dt$.

15

Déterminer pour tout $\lambda > 0$ la valeur de $\int_0^\pi \frac{\mathrm{d}x}{1 + \lambda \cos^2 x}$ et en déduire que $\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^3 \cos^2 x}$ converge.

16

_____ (***) _

____ X PC 2013

Soit f de classe \mathcal{C}^1 de $I = [1; +\infty[$ dans \mathbb{R} . On suppose que $(f')^2$ est intégrable sur I. Montrer que $t \longmapsto f(t)^2/t^2$ est intégrable sur I et déterminer la limite de $t \mapsto f(t)^2/t$ en $+\infty$.

Fonctions définies par une intégrale

Posons

$$f(x) = \int_0^{\pi/2} (\sin t)^x dt$$
 et $\forall x > 0, \quad g(x) = xf(x)f(x-1)$

- (a). Déterminer le domaine de définition de f.
- (b). Montrer que g est 1-périodique.
- (c). Montrer que g admet une limite en $+\infty$. En déduire la valeur de g(x) pour tout x>0.
- (d). Etablir l'équivalent $f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$.

18

Donner le domaine de définition, puis étudier la continuité et la dérivabilité de $f: x \longmapsto \int_0^x \sin(1/t) dt$.

Soit f définie par

$$f(x) = e^{x^2} \int_{-\infty}^{+\infty} e^{-t^2} dt$$

Justifier que f est définie pour tout réel x, puis donner un développement asymptotique à tout ordre en $+\infty$ de f.

Soit φ définie par

$$\varphi(x) = \int_{x}^{x^{4}} \frac{\arccos t}{\arcsin t} \, \mathrm{d}t$$

- (a). Donner le domaine de définition de φ .
- (b). Déterminer un équivalent simple de $\varphi(x)$ en 0.

_____(**) _____ Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue et 1-périodique.

- (a). Montrer que pour tout $\lambda>0$, l'intégrale $\int_0^{+\infty}e^{-\lambda t}f(t)\,\mathrm{d}t$ converge.
- (b). Déterminer $\lim_{\lambda \to 0^+} \lambda \int_0^{+\infty} e^{-\lambda t} f(t) dt$.

Indications

- 1 (a) Utiliser des arguments de comparaison par o() et de prolongement par continuité.
 - (b) Utiliser les comparaisons par équivalent en 0 et $+\infty$ à l'aide du développement limité de th en ces bornes.
 - (c) Utiliser des comparaisons par équivalent en 0.
 - (d) Utiliser des comparaisons par o() en $+\infty$ et $-\infty$.
- **3** Pour calculer I(3/2), effectuer une intégration par parties puis un changement de variable.
- 4 Faire une intégration par parties sur un segment.
- 5 Faire une intégration par parties sur un segment puis un changement de variable.
- **6** Calculer $\int_{1/n}^{1} \frac{\mathrm{d}x}{2 + |1/x|}$ en utilisant Chasles et un découpage judicieux de l'intégrale.
- 7 (b) Utiliser un changement de variable.
 - (d) Utiliser la croissance de $x \mapsto \sqrt{\tan x}$ pour encadrer $\sqrt{\tan(k/n)}$ entre 2 intégrales.
- 8 Pour le calcul, poser t = 2 sh u.
- 9 (b) Pour déterminer la valeur de l'intégrale, intégrer sur un segment pour séparer les intégrales et faire des changements de variables.
 - (c) Effectuer un changement de variable pour se ramener au cas précédent.
- 10 Remarquer que $f: x \mapsto 2x + 2\sqrt{x}\sqrt{1+x}$ est une bijection strictement croissante de \mathbb{R}_+^* dans lui-même.
- 11 Utiliser une primitive de $t \mapsto \cos(t)^2$. Pour la seconde fonction, utiliser une comparaison série-intégrale.
- 12 En $+\infty$, chercher un développement asymptotique de th.
- 13 Poser $I_n = \int_{(n\pi)^{1/3}}^{((n+1)\pi)^{1/3}} |x \sin(x^3)| dx$ et justifier à l'aide d'une minoration que $\sum_{n>0} I_n$ diverge.
- **14** Etudier l'intégrabilité de g sur $]0; \sqrt{a}]$ et sur $[\sqrt{a}; +\infty[$ à l'aide d'un changement de variable.
- 15 Pour calculer $I(\lambda)$, faire un changement de variable. Pour la convergence, utiliser la comparaison série-intégrale.
- 16 On pourra effectuer une intégration par parties de $\int_1^x \frac{f(t)^2}{t^2} dt$ puis utiliser Cauchy-Schwarz.
- 17 (a) Effectuer une intégration par parties sur la quantité f(x+1) pour x>0.
 - (b) En utilisant la décroissance de f, donner un encadrement de g(x) impliquant $g(\lfloor x \rfloor)$ et $g(\lfloor x \rfloor + 1)$. En déduire que g est constante.
 - (c) Utiliser un encadrement de f(x) impliquant g.
- Pour l'étude en 0, on pourra utiliser une intégration par parties. Pour l'existence en $x \neq 0$, utiliser un changement de variable ou un théorème de comparaison.
- 19 Pour le développement asymptotique, faire des intégrations par parties successives.
- **20** Pour le (b), faire un développement limité généralisé de $\arccos(t)/\arcsin(t)$ en 0.
- $|\mathbf{21}|$ (a) Justifier que f est bornée sur \mathbb{R}_+ .
 - (b) Utiliser la 1-périodicité de f et le changement de variable u=t+1.