Partie IV - Algèbre linéaire

On considère les matrices
$$I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ A = \begin{pmatrix} p & 0 & p & 0 \\ q & q & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & q & 0 \end{pmatrix} \text{ et } L = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Soit $t \in \mathbb{R}$. On note χ_A le polynôme caractéristique de A, si bien que $\chi_A(t)$ est le déterminant de $A - tI_4$.

 ${f Q24.}$ Montrer que 0 est valeur propre de A et donner un vecteur propre de A associé à la valeur propre 0.

Q25. Trouver les réels α , β et γ tels que, pour tout $t \in \mathbb{R}$, $\chi_A(t) = t^4 - t^3 + \alpha t^2 + \beta t + \gamma$.

On dit que la matrice colonne $S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix}$ est solution de (E_t) lorsque S = tAS + L.

Q26. Montrer que, pour tout $t \in \mathbb{R}$, S est solution de (E_t) si et seulement si $(I_4 - tA)S = L$.

Pour tout $t \in \mathbb{R}$, on note $\psi_A(t)$ le déterminant de la matrice $I_4 - tA$.

Q27. Montrer que pour tout $t \in \mathbb{R}^*$, $\psi_A(t) = t^4 \chi_A(1/t)$.

Q28. Vérifier que pour tout $t \in \mathbb{R}$, $\psi_A(t) = -p^2qt^3 + pqt^2 - t + 1$.

Q29. En déduire que, pour t au voisinage de 0, l'équation (E_t) possède une unique solution S.

Pour tout $k \in [1, 4]$, on note U_k la k-ième colonne de $I_4 - tA$. On note \mathcal{B} la base canonique de

$$\mathcal{M}_{4,1}(\mathbb{C})$$
 et on suppose que la matrice colonne $S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix}$ est solution de (E_t) .

Q30. Vérifier que $L = U_1S_0 + U_2S_1 + U_3S_2 + U_4S_3$.

Q31. En déduire que $\det_{\mathscr{B}}(U_1, U_2, U_3, L) = S_3 \cdot \det_{\mathscr{B}}(U_1, U_2, U_3, U_4) = S_3 \cdot \psi_A(t)$.

Q32. Montrer que, pour t au voisinage de 0, on a l'égalité :

$$S_3 = \frac{pq^2t^3}{-p^2qt^3 + pqt^2 - t + 1}.$$

On se propose de déterminer certaines propriétés des valeurs propres de A. On note λ une valeur propre complexe non nulle de A.

Q33. Montrer que λ est valeur propre de la matrice transposée de A.

Q34. En déduire qu'il existe trois complexes non tous nuls x_1, x_2 et x_3 tels que :

$$(\mathcal{H}) \begin{cases} px_1 + qx_2 = \lambda x_1 \\ qx_2 + px_3 = \lambda x_2 \\ px_1 = \lambda x_3 \end{cases}$$

On considère désormais trois complexes non tous nuls x_1, x_2 et x_3 qui vérifient le système (\mathscr{H}). On note alors $M = \max(|x_1|, |x_2|, |x_3|)$ et on remarque que l'on peut toujours se placer dans l'un des trois cas suivants :

- i) $M = |x_3|$; ii) $M = |x_2|$ avec $M > |x_3|$; iii) $M = |x_1|$ avec $M > |x_2|$ et $M > |x_3|$.
- **Q35.** Montrer, en distinguant ces trois cas, que $|\lambda| < 1$.
- ${\bf Q36.}$ Montrer l'existence de nombres complexes $\lambda_1,\,\lambda_2$ et λ_3 tels que :

$$0<|\lambda_1|\leqslant |\lambda_2|\leqslant |\lambda_3|<1 \qquad \text{et} \qquad \forall t\in\mathbb{R}, \quad \chi_A(t)=t(t-\lambda_1)(t-\lambda_2)(t-\lambda_3).$$

Q37. Montrer l'existence de nombres complexes μ , a, b et c tels que :

$$\mu \neq 0$$
, $1 < |a| \leqslant |b| \leqslant |c|$ et $\forall t \in \mathbb{R}$, $\psi_A(t) = \mu(t-a)(t-b)(t-c)$.