Soient $(f_n)_{n\in\mathbb{N}}$ et f des fonctions de \mathbb{R} dans \mathbb{R} telles que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

- (a). Soit $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ une application quelconque. Montrer que $(f_n \circ \phi)_{n \in \mathbb{N}}$ converge uniformément vers $f \circ \phi$.
- (b). La suite $(\phi \circ f_n)_{n \in \mathbb{N}}$ converge-t-elle nécessairement uniformément vers $\phi \circ f$?
- (c). Même question en supposant ϕ continue? lipschitzienne?
- (a). Soit $\epsilon > 0$. Par définition de la convergence uniforme,

$$\exists N \in \mathbb{N}, \quad \forall n \geq N, \quad \forall t \in \mathbb{R}, \qquad |f_n(t) - f(t)| \leq \epsilon$$

En particulier,

$$\forall n > N. \quad \forall x \in \mathbb{R}.$$

$$\forall n \ge N, \quad \forall x \in \mathbb{R}, \qquad |f_n(\phi(x)) - f(\phi(x))| = |(f_n \circ \phi)(x) - (f \circ \phi)(x)| \le \epsilon$$

Cette dernière majoration montre bien que

La suite
$$(f_n \circ \phi)_{n \in \mathbb{N}}$$
 converge uniformément vers $f \circ \phi$.

(b). Prenons $\phi: x \longmapsto x^2$ et $f_n: x \longmapsto x+1/n$, définies sur \mathbb{R} . On vérifie facilement que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction identité sur \mathbb{R} car $||f_n - I_d||_{\infty} = 1/n$. Cependant, pour tout entier n et tout réel x

$$(\phi \circ f_n)(x) = \left(x + \frac{1}{n}\right)^2 - x^2 = \frac{2x}{n} + \frac{1}{n^2}$$

qui n'est jamais borné sur R. Ainsi, la convergence ne peut être uniforme.

La suite $(\phi \circ f_n)_{n \in \mathbb{N}}$ ne converge pas nécessairement uniformément vers $\phi \circ f$.

(c). L'hypothèse de continuité de change rien, puisque le contre-exemple de la question précédente convient encore. Supposons maintenant ϕ lipschitzienne et montrons qu'alors, $(\phi \circ f_n)_{n \in \mathbb{N}}$ converge uniformément vers $\phi \circ f$. Par hypothèse, il existe $M \in \mathbb{R}_+$ tel que

$$\forall x, y \in \mathbb{R}, \qquad |\phi(x) - \phi(y)| \le M |x - y|$$

et notamment pour tout entier n et tout réel x,

$$|\phi(f_n(x)) - \phi(f(x))| = |(\phi \circ f_n)(x) - (\phi \circ f(x))| \le M |f(x) - f_n(x)| \le M ||f_n - f||_{\infty}$$

et en particulier,

$$||\phi \circ f_n - \phi \circ f||_{\infty} \leq M ||f_n - f||_{\infty}$$

Puisque $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f, le terme de droite est de limite nulle quand n tend vers $+\infty$. Il en est donc de même pour celui de gauche, ce qui prouve que

Si ϕ est lipschitzienne, alors $(\phi \circ f_n)_{n \in \mathbb{N}}$ converge uniformément vers f.

_____(*) _____

Soit $f:[0;1] \longrightarrow \mathbb{R}$ continue et telle que f(1)=0. On pose $g_n:x\longmapsto x^nf(x)$ pour tout entier n. Montrer que la suite $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers 0.

Soit $\epsilon > 0$. Par continuité de f en 1,

$$\exists \eta > 0, \quad \forall x \in [1 - \eta; 1], \qquad |f(x)| < \epsilon$$

et en particulier

$$\forall x \in [1 - \eta; 1], \quad \forall n \in \mathbb{N}, \qquad |f_n(x)| < \epsilon \qquad \text{d'où} \qquad ||f_n||_{\infty, [1 - \eta; 1]} < \epsilon$$

$$|f_n(x)| < \epsilon$$

$$||f_n||_{\infty,[1-n:1]} < \epsilon$$

Reste à majorer f_n sur $[0; 1-\eta]$. Notons que puisque f est continue sur le segment [0; 1], elle est bornée. Dès lors, pour tout entier n, on peut écrire que

$$||f_n||_{\infty,[0;1-\eta]} \le ||f||_{\infty} \cdot (1-\eta)^n \xrightarrow[n \to +\infty]{} 0$$

Ainsi,

$$\exists N \in \mathbb{N}, \quad \forall n \ge N, \qquad ||f_n||_{\infty, [0; 1-\eta]} \le \epsilon$$

Dès lors, pour $n \geq N$,

$$||f_n||_{\infty} = \max\left(||f_n||_{\infty,[0;1-\eta]},||f_n||_{\infty,[1-\eta;1]}\right) < \epsilon$$

ce qui établit donc que

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0.

3

(*)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues convergeant uniformément vers f sur un segment [a;b] et $(x_n)_{n\in\mathbb{N}}$ une suite de points de [a;b] convergeant vers $x\in[a;b]$. Montrer que $f_n(x_n)\xrightarrow[n\to+\infty]{}f(x)$.

Donner un contre-exemple si la convergence n'est pas uniforme.

Soit $\epsilon > 0$. Par définition de la convergence uniforme,

$$\exists N \in \mathbb{N}, \quad \forall n \ge N, \quad \forall x \in [a; b], \qquad |f_n(x) - f(x)| < \epsilon$$

et en particulier

$$\forall n \ge N, \qquad |f_n(x_n) - f(x_n)| < \epsilon$$

Par ailleurs, f est continue puisque limite uniforme de fonctions continues, et par caractérisation séquentielle de la continuité, sachant que $(x_n)_{n\in\mathbb{N}}$ converge vers x,

$$\exists N' \in \mathbb{N}, \quad \forall n \ge N', \qquad |f(x_n) - f(x)| < \epsilon$$

Dès lors, pour $n \ge \max(N, N')$,

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < 2\epsilon$$

Le réel ϵ ayant été pris arbitraire, on en déduit que

La suite
$$(f_n(x_n))_{n\in\mathbb{N}}$$
 converge vers $f(x)$.

Pour trouver un contre-exemple lorsque la convergence n'est plus uniforme, considérons les suites $(x_n)_{n\in\mathbb{N}}$ et $(f_n)_{n\in\mathbb{N}}$ définies par

$$x_0 = 0$$
 et $\forall n \in \mathbb{N}$, $x_n = 1 - \frac{1}{n}$ et $\forall n \in \mathbb{N}$, $f_n : [0; 1] \longrightarrow \mathbb{R}$
 $x \longmapsto x^n$

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0;1] vers la fonction nulle sur [0;1[et valant 1 en 1. La suite $(x_n)_{n\in\mathbb{N}}$ converge vers 1, mais pour $n\geq 1$,

$$f_n(x_n) = \left(1 - \frac{1}{n}\right)^n = \exp\left[n \cdot \ln\left(1 - \frac{1}{n}\right)\right] = \exp\left(-1 + O\left(\frac{1}{n}\right)\right) \xrightarrow[n \to +\infty]{} e^{-1} \neq f(1)$$

Le résultat n'est pas nécessairement conservé si la convergence n'est pas uniforme.

4

____ (***) __

PC CCP 2003

On définit la suite de fonctions $(\chi_n)_{n\in\mathbb{N}}$ par morceaux en posant, pour tout $n\in\mathbb{N}^*$ et $k\in\mathbb{N}$

$$\forall x \in \left[\frac{k}{n}; \frac{k+1}{n}\right], \qquad \chi_n(x) = \left(1 + \frac{1}{n}\right)^k \left(1 + x - \frac{k}{n}\right)$$

(a). Montrer que χ_n est continue sur \mathbb{R}_+ pour tout entier n et que

$$\forall x \in \mathbb{R}, \qquad \left(1 + \frac{1}{n}\right)^{nx-1} \le \chi_n(x) \le \left(1 + \frac{1}{n}\right)^{nx+1}$$

- (b). En déduire que $(\chi_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ vers la fonction exponentielle.
- (c). Montrer que $(\chi_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R}_+ .
- (d). Calculer $\lim_{n\to+\infty}e^n-\chi_n(n)$. En déduire que $(\chi_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur \mathbb{R}_+ .
- (a). Soit $n \in \mathbb{N}^*$. Il est clair que χ_n est continue sur]k/n; (k+1)/n[pour tout entier k. Il reste donc à vérifier la continuité en k/n pour $k \in \mathbb{N}^*$. Mais par définition,

$$\lim_{x \to (k/n)^{-}} \chi_n(x) = \lim_{x \to (k/n)^{-}} \left(1 + \frac{1}{n}\right)^{k-1} \left(1 + x - \frac{k-1}{n}\right) = \left(1 + \frac{1}{n}\right)^k$$

et

$$\lim_{x \to (k/n)^+} \chi_n(x) = \lim_{x \to (k/n)^+} \left(1 + \frac{1}{n}\right)^k \left(1 + x - \frac{k}{n}\right) = \left(1 + \frac{1}{n}\right)^k$$

ce qui prouve la continuité en k/n. Ainsi,

La fonction χ_n est continue sur \mathbb{R}_+ pour tout entier n.

Soit maintenant $x \in \mathbb{R}_+$ et k l'unique entier tel que $x \in [k/n; (k+1)/n[$ (précisément, $k = \lfloor nx \rfloor)$. Par définition de χ_n et de k, on a

$$\left(1 + \frac{1}{n}\right)^k \le \chi_n(x) \le \left(1 + \frac{1}{n}\right)^{k+1} \qquad \text{et} \qquad k \le nx < k+1 \qquad \text{d'où} \qquad \left\{ \begin{array}{c} k+1 \le nx+1 \\ nx-1 \le k \end{array} \right.$$

Sachant que pour tout $\alpha > 1$, l'application $t \mapsto \alpha^t$ est croissante sur \mathbb{R} , on en déduit aussitôt le résultat avec $\alpha = 1 + 1/n$.

$$\forall x \in \mathbb{R}, \qquad \left(1 + \frac{1}{n}\right)^{nx-1} \le \chi_n(x) \le \left(1 + \frac{1}{n}\right)^{nx+1}$$

(b). Fixons $x \in \mathbb{R}_+$ et $\epsilon \in \{-1, 1\}$. Alors,

$$\ln\left(1+\frac{1}{n}\right)^{nx+\epsilon} = (nx+\epsilon)\ln\left(1+\frac{1}{n}\right) = (nx+\epsilon)\left(\frac{1}{n}+O\left(\frac{1}{n}\right)\right) = x+O\left(\frac{1}{n}\right) \xrightarrow[n\to+\infty]{} x$$

et donc

$$\left(1 + \frac{1}{n}\right)^{nx+\epsilon} \xrightarrow[n \to +\infty]{} \exp(x)$$

Cette limite étant valable pour $\epsilon = 1$ et $\epsilon = -1$, l'encadrement précédent assure que $(\chi_n(x))_{n \in \mathbb{N}}$ converge vers $\exp(x)$. Ceci étant vrai pour tout $x \in \mathbb{R}_+$,

La suite $(\chi_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ vers la fonction exponentielle.

(c). Fixons $n \in \mathbb{N}^*$, un segment I = [a; b] de \mathbb{R}_+ et notons

$$f_n: x \longmapsto (nx+1)\ln(1+1/n)$$
 et $g_n: x \longmapsto (nx-1)\ln(1+1/n)$

de sorte que

$$\exp \circ g_n \le \chi_n \le \exp \circ f_n$$

Pour établir la convergence uniforme de $(\chi_n)_{n\in\mathbb{N}}$ vers exp sur tout segment, il suffit de montrer celle de $(\exp \circ g_n)_{n\in\mathbb{N}}$ et $(\exp \circ f_n)_{n\in\mathbb{N}}$ vers exp. On se contente de la première, la seconde étant similaire. Pour tout $x\in I$,

$$f_n(x) - x = \ln\left(1 + \frac{1}{n}\right) + x\left(n\ln\left(1 + \frac{1}{n}\right) - 1\right)$$

d'où

$$|f_n(x) - x| \le \ln\left(1 + \frac{1}{n}\right) + b \left| n \ln\left(1 + \frac{1}{n}\right) - 1 \right|$$

Le terme de droite est de limite nulle lorsque n tend vers $+\infty$ et est indépendant de x, ce qui prouve la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ vers la fonction identité sur tout segment de \mathbb{R}_+ .

L'inégalité des accroissement finis appliquée à la fonction exponentielle donne maintenant pour tout réel x

$$|\exp(f_n(x)) - \exp x| \le |f_n(x) - x| \left(\sup_{t \in [f_n(x);x]} \exp(t)\right)$$

On majore à nouveau les quantités de droite indépendamment de $x \in [a; b]$ grossièrement :

$$|x| \le b$$
 $|f_n(x)| \le u_n = (nb+1)\ln(1+1/n)$

puis par croissance de exp,

$$\sup_{t \in [f_n(x);x]} \exp(t) \le \exp\left[\max(b, u_n)\right]$$

Finalement,

$$||\chi_n - \exp||_{\infty,[a;b]} \le ||f_n - I_d||_{\infty,[a;b]} \exp [\max(b, u_n)]$$

Notons que $(u_n)_{n\in\mathbb{N}}$ converge vers b donc est bornée. Ainsi, $(\exp\max(b,u_n))_{n\in\mathbb{N}}$ est bornée, ce qui conjuguée à la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ vers l'identité sur [a;b] implique celle de $(\exp\circ f_n)_{n\in\mathbb{N}}$ vers exp sur ce même segment. D'après tout ce qui précède, on peut donc conclure :

La suite $(\chi_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R}_+ vers la fonction exponentielle.

(d). Pour tout entier $n \ge 1$, $n \in [n^2/n; (n^2+1)/n]$ donc par définition,

$$\chi_n(n) = \left(1 + \frac{1}{n}\right)^{n^2} = \exp\left[n^2 \ln\left(1 + \frac{1}{n}\right)\right] = \exp\left[n - \frac{1}{2} + O\left(\frac{1}{n}\right)\right] \underset{n \to +\infty}{\sim} e^{-1/2} \cdot e^n$$

Par conséquent,

$$e^n - \chi_n(n) \sim (1 - e^{-1/2}) \cdot e^n \xrightarrow[n \to +\infty]{} + \infty$$

Dès lors,

$$||\chi_n - \exp||_{\infty} \ge |e^n - \chi_n(n)| \xrightarrow[n \to +\infty]{} +\infty$$

et ainsi

La convergence de $(\chi_n)_{n\in\mathbb{N}}$ n'est pas uniforme sur \mathbb{R}_+ .

Pour tout $x \in \mathbb{R}$, on pose $u_0(x) = x$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1}(x) = \sin u_n(x)$$

Etudier les différents modes de convergence de la suite $(u_n)_{n\in\mathbb{N}}$.

Soit $x \in \mathbb{R}$. On peut commencer par remarquer que $u_1(x) = \sin x \in [-1, 1]$ qui est stable par sin. Par conséquent, la suite $(u_n(x))_{n\in\mathbb{N}}$ est à valeurs dans [-1;1] à partir du rang 1. Or, sur cet intervalle, la fonction sin est strictement croissante donc $(u_n(x))_{n\in\mathbb{N}}$ est monotone. Elle est donc convergente car bornée et sa limite est un point fixe de sin sur cet intervalle. Puisque 0 est le seul point fixe de sin sur [-1;1] (et même sur \mathbb{R} , par une étude de fonction élémentaire), il vient que $(u_n(x))_{n\in\mathbb{N}}$ converge vers 0. Ceci étant vrai pour tout réel x,

La suite de fonctions $(u_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction nulle sur \mathbb{R} .

Montrons maintenant que la convergence est uniforme. Par croissance de sin sur [-1;1], on a pour tout réel x

$$-1 \le u_1(x) \le 1$$
 donc $-\sin(1) = u_1(-1) \le u_2(x) \le \sin 1 = u_1(1)$

Une récurrence immédiate sur n avec les mêmes arguments prouve que

$$\forall n \geq$$
, $u_{n-1}(-1) \leq u_n(x) \leq u_{n-1}(1)$ d'où $||u_n||_{\infty} \leq u_{n-1}(1)$

D'après la convergence simple de la suite, la suite $(u_n(1))_{n\in\mathbb{N}}$ converge vers 0, ce qui assure compte tenu de la majoration précédente que

La suite de fonctions $(u_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur \mathbb{R} .

MP TPE 2001

On définit $(P_n)_{n\in\mathbb{N}}$ par

 $P_0 = 1$ et $\forall n \in \mathbb{N}, P_{n+1} = P_n + \frac{1}{2}(X - P_n^2)$

(a). Justifier que pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}$,

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) \left[1 - \frac{1}{2} (P_n(x) + \sqrt{x}) \right]$$

Etablir une formule similaire pour $P_{n+1}(x) + \sqrt{x}$.

(b). En déduire que pour tout $x \in [0, 1]$ et tout entier n

$$\sqrt{x} \le P_{n+1}(x) \le P_n(x) \le 1$$

puis la convergence simple de $(P_n)_{n\in\mathbb{N}}$ vers $x\longmapsto \sqrt{x}$ sur [0;1].

- (c). En étudiant le sens de variation de $x \mapsto P_n(x) \sqrt{x}$ et celui de $x \mapsto P_n(x) + \sqrt{x}$ sur [0; 1], déterminer $\left|\left|P_n \sqrt{\cdot}\right|\right|_{\infty, [0; 1]}$.
- (d). En déduire que $(P_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1].

(a) Soit $x \in \mathbb{R}_+$ et $n \in \mathbb{N}$. Alors,

$$(x - P_n(x))^2 = (\sqrt{x} - P_n(x))(\sqrt{x} + P_n(x))$$

d'où

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) + \frac{1}{2} (\sqrt{x} - P_n(x)) (\sqrt{x} + P_n(x))$$

soit bien après factorisation

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) \left[1 - \frac{1}{2} (P_n(x) + \sqrt{x}) \right]$$

De la même manière, on établit que

$$P_{n+1}(x) + \sqrt{x} = (P_n(x) + \sqrt{x}) \left[1 - \frac{1}{2} (P_n(x) - \sqrt{x}) \right]$$

(b) Soit $x \in [0, 1]$ et n un entier quelconque. On suppose que $\sqrt{x} \le P_n(x) \le 1$. D'après la question précédente,

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} \underbrace{(x - P_n(x)^2)}_{\leq 0} \leq P_n(x)$$

De plus, on a $P_n(x) + \sqrt{x} \le 2 \text{ sur } [0;1] \text{ donc}$

$$P_{n+1}(x) - \sqrt{x} = \underbrace{\left(P_n(x) - \sqrt{x}\right)}_{\geq 0} \left[1 - \underbrace{\frac{P_n(x) + \sqrt{x}}{2}}_{\leq 1}\right] \geq 0$$

On peut alors conclure par une récurrence puisque $\sqrt{x} \le P_0(x) \le 1$ pour tout entier $x \in [0,1]$.

Pour tout
$$x \in [0, 1]$$
, pour tout $n \in \mathbb{N}$, $\sqrt{x} \le P_{n+1}(x) \le P_n(x) \le 1$.

Pour tout $x \in [0;1]$ fixé, la suite $(P_n(x))_{n \in \mathbb{N}}$ est donc décroissante et minorée donc convergente. Notons $\ell(x)$ sa limite. Pour tout entier n, on a

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} (x - P_n(x))^2$$

donc en passant à la limite, il vient

$$\ell(x) = \ell(x) + \frac{1}{2} \left(x - \ell(x)^2 \right)$$
 soit $\ell(x)^2 = x$ d'où $\ell(x) = \sqrt{x}$

car $\ell(x)$ est positif car limite d'une suite de réels positifs. Finalement, $P_n(x) \xrightarrow[n \to +\infty]{} \sqrt{x}$ pour tout x soit

La suite $(P_n)_{n\in\mathbb{N}}$ converge simplement sur [0;1] vers la fonction racine.

(c) Notons pour tout $n \in \mathbb{N}$, $\varphi_n : x \longmapsto P_n(x) - \sqrt{x}$ et $\psi_n : x \longmapsto P_n(x) + \sqrt{x}$

Pour n=0, on a clairement φ_n et ψ_n respectivement décroissante et croissante. Si l'on suppose ce résultat vrai au rang n, la formule de la question (a) montre que φ_{n+1} est un produit de fonctions décroissantes positives, donc est décroissante positive. On démontre de même que ψ_n est croissante. Par récurrence,

Pour tout entier
$$n, x \mapsto P_n(x) - \sqrt{x}$$
 est décroissante et $x \mapsto P_n(x) + \sqrt{x}$ est croissante.

D'après la question (b), la fonction $x \mapsto P_n(x) - \sqrt{x}$ est positive. On vient maintenant de montrer qu'elle est décroissante. Par conséquent, elle atteint sa borne supérieure en 0 et

$$||P_n - \sqrt{\cdot}||_{\infty,[0;1]} = P_n(0)$$

(d) Par convergence simple de $(P_n)_{n\in\mathbb{N}}$, on a $(P_n(0))_{n\in\mathbb{N}}$ de limite nulle lorsque n tend vers $+\infty$. D'après l'égalité précédente,

La suite $(P_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1] vers la fonction racine.

7 _______ (**) ______ TPE MP 2001

Soit $m \in \mathbb{N}^*$ et $(P_n)_{n \in \mathbb{N}}$ une suite de polynômes de $\mathbb{R}_m[X]$, convergeant simplement sur [a;b] vers une fonction f. En utilisant l'interpolation de Lagrange en (m+1) points distincts de [a;b], montrer que f est une fonction polynomiale de degré au plus m et que la convergence est uniforme.

Soient x_0, \ldots, x_m une famille de points de [a; b] deux à deux distincts. Notons

$$\forall i \in [0; m], \qquad L_i = \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$$

les polynômes interpolateurs de Lagrange aux points x_0, x_1, \ldots, x_m , pour lesquels on a $P_i(x_j) = \delta_{i,j}$ pour tous $i, j \in [0; m]$. On sait alors que pour tout $P \in \mathbb{R}_m[X]$,

$$P = \sum_{i=0}^{m} P(x_i) L_i$$

car la différence admet les m+1 points x_0, \ldots, x_m pour racines donc est le polynôme nul. En particulier, on en déduit que pour tout entier n et tout réel $x \in [a; b]$

$$P_n(x) = \sum_{i=0}^m P_n(x_i) L_i(x)$$

Par hypothèse de convergence simple, la suite $(P_n(x_i))_{n\in\mathbb{N}}$ est convergente, de limite $f(x_i)$ et ce pour tout $i\in[0;m]$. On en déduit donc que

$$P_n(x) \xrightarrow[n \to +\infty]{} \sum_{i=0}^m f(x_i) L_i(x)$$
 d'où $f(x) = \sum_{i=0}^m f(x_i) L_i(x)$

Dès lors, puisque $f(x_i)$ ne dépend pas de x et que L_i est un polynôme,

La fonction f est une application polynomiale de degré au plus m.

Pour établir que la fonction est uniforme, notons que L_i est continue donc bornée sur [a;b] pour tout i. Par suite, pour tout entier n et tout réel x,

$$|P_n(x) - f(x)| = \left| \sum_{i=0}^m P_n(x_i) L_i(x) - \sum_{i=0}^m f(x_i) L_i(x) \right|$$

$$\leq \sum_{i=0}^m |P_n(x_i) - f(x_i)| |L_i(x)|$$

$$|P_n(x) - f(x)| \leq \sum_{i=0}^m |P_n(x_i) - f(x_i)| ||L_i||_{\infty, [a;b]}$$

et donc

$$||P_n - f||_{\infty} \le \sum_{i=0}^{m} |P_n(x_i) - f(x_i)| ||L_i||_{\infty, [a;b]}$$

Le terme de droite est une somme finie de quantité de limite nulle (car $P_n(x_i) \xrightarrow[n \to +\infty]{} f(x_i)$) donc de limite nulle. Par conséquent,

La suite $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [a;b].

8

_____(*) ____

Etudier suivant l'intervalle de définition les différents types de convergence des sommes

$$\sum_{n=0}^{+\infty} e^{-n^2 x} \qquad \text{et} \qquad \sum_{n=0}^{+\infty} x e^{-n^2 x}$$

Déterminer ensuite leurs limites en 0^+ .

Notons pour tout $n \in \mathbb{N}$

$$f_n: x \longmapsto e^{-n^2 x}$$
 et $g_n: x \longmapsto x f_n(x)$

La suite $(f_n(x))_{n\in\mathbb{N}}$ ne tend vers 0 que si x>0, auquel cas elle est dominée par $1/n^2$ lorsque n tend vers $+\infty$. En ce qui concerne $(g_n(x))_{n\in\mathbb{N}}$, il en va de même à l'exception du cas x=0 pour lequel la suite est nulle. Par suite,

Les séries
$$\sum_{n\geq 0} f_n(x)$$
 et $\sum_{n\geq 0} g_n(x)$ sont convergentes respectivement pour $x>0$ et $x\geq 0$.

L'étude des variations de g_n montrent que celle-ci est positive et atteint son maximum en $x = 1/n^2$ d'où $||g_n||_{\infty,\mathbb{R}_+} = 1/(en^2)$.

On a donc convergence normale de $\sum_{n\geq 0} g_n$ sur \mathbb{R}_+ , et la somme est continue sur \mathbb{R}_+ . Par suite, comme $\sum_{n=0}^{+\infty} g_n(0) = 0$,

La fonction
$$\sum_{n=0}^{+\infty} g_n$$
 est de limite nulle en 0.

On va maintenant chercher un équivalent de $F = \sum_{n=0}^{+\infty} f_n$ en 0 par comparaison-série intégrale. Fixons x > 0. Pour tout entier n,

$$e^{-(n+1)^2x} \le \int_n^{n+1} e^{-t^2x} dt \le e^{-n^2x}$$

En sommant pour n allant de 0 à $+\infty$ (toutes les séries convergent, le terme général étant dominé par $1/n^2$), on obtient l'encadrement

$$F(x) - 1 \le \int_0^{+\infty} e^{-t^2 x} dt \le F(x) \qquad \text{soit} \qquad \int_0^{+\infty} e^{-t^2 x} dt \le F(x) \le 1 + \int_0^{+\infty} e^{-t^2 x} dt$$

Or, par changement de variable affine $u = \sqrt{x}t$, on a

$$\int_{0}^{+\infty} e^{-t^{2}x} dt = \frac{1}{\sqrt{x}} \int_{0}^{+\infty} e^{-u^{2}} du = \sqrt{\frac{\pi}{2x}}$$

et donc, par encadrement

$$F(x) \underset{x\to 0}{\sim} \sqrt{\frac{\pi}{2x}}$$

En particulier,

La fonction $\sum_{n=0}^{+\infty} f_n$ est de limite $+\infty$ en 0^+ .

9

Soit $\alpha > 0$. On note $I =]-\alpha; \alpha[$ et on considère $f \in \mathcal{C}^1(I,\mathbb{R})$ telle que f(0) = 0 et $\lambda \in]0;1[$. Déterminer les fonctions φ continues sur I et telles que

$$\forall x \in I, \qquad \varphi(x) - \varphi(\lambda x) = f(x) \tag{*}$$

Raisonnons par analyse-synthèse en considérant φ continue sur I vérifiant (\star) . Soit $x \in I$. Alors, pour tout entier n, $\lambda^n x \in I$ et ainsi

$$\varphi(\lambda^n x) - \varphi(\lambda^{n+1} x) = f(\lambda^n x)$$

En sommant ces égalités pour n allant de 0 à $N \in \mathbb{N}$, il vient par téléscopage

$$\varphi(x) - \varphi(\lambda^{N+1}x) = \sum_{n=0}^{N} f(\lambda^n x)$$

La fonction f étant de classe \mathcal{C}^1 sur \mathbb{R} , la quantité f(x)/x admet f'(0) pour limite en 0, donc est bornée au voisinage de ce point. Par conséquent,

$$f(x) \underset{x \to 0}{=} O(x)$$
 d'où $f(\lambda^N x) = O(\lambda^N)$

Cette domination assure que la série $\sum_{n\geq 0} f(\lambda^N x)$ est convergente. Par continuité de φ en 0, on a de plus $\varphi(\lambda^N x)$ qui tend vers $\varphi(0)$ lorsque N tend vers $+\infty$. En passant à la limite, on obtient finalement

$$\forall x \in I, \qquad \varphi(x) = \varphi(0) + \sum_{n=0}^{+\infty} f(\lambda^n x)$$
 (**)

Réciproquement, vérifions que les fonctions de la forme $(\star\star)$ sont bien continues et solutions de (\star) . Pour établir la continuité, on utilise le théorème de continuité des séries de fonctions à $\sum_{n>0} f_n$ avec

$$\forall n \in \mathbb{N}, \qquad f_n: \ I \longrightarrow \mathbb{R}$$

$$x \longmapsto f(\lambda^n x)$$

Notons $J = [-\alpha/2; \alpha/2]$. La fonction f' est continue donc bornée sur J. Soit donc $m = ||f'||_{\infty,J}$. En appliquant l'inégalité des accroissements finis entre 0 et x, on obtient

$$\forall x \in J, \qquad |f(x)| \le m |x|$$

Soit maintenant [a;b] un segment de I. Pour n suffisamment grand (le rang ne dépend que de a et b), on a $[\lambda^n a; \lambda^n b] \subset J$ et donc

$$\forall x \in \left[a;b\right], \qquad \lambda^n x \in J \qquad \text{d'où} \qquad \left|f_n(x)\right| \leq m \left|x\right| \lambda^n \leq m \max(\left|a\right|,\left|b\right|) \lambda^n$$

On a donc justifié que

$$||f_n||_{\infty,[a;b]} = O(\lambda^n)$$

ce qui assure la convergence normale sur tout segment de la série $\sum_{n\geq 0} f_n$, et donc la continuité de la somme. Les éléments de la forme $(\star\star)$ sont donc des applications continues. Pour finir, quelle que soit la valeur de $\varphi(0)$, on a par changement d'indice

$$\varphi(x) - \varphi(\lambda x) = \sum_{n=0}^{+\infty} f(\lambda^n x) - \sum_{n=0}^{+\infty} f(\lambda^{n+1} x) = \sum_{n=0}^{+\infty} f(\lambda^n x) - \sum_{n=1}^{+\infty} f(\lambda^n x) = f(x)$$

On peut donc conclure.

Les fonctions φ continues vérifiant (\star) sont celles de la forme

$$\forall x \in I, \qquad \varphi(x) = \varphi(0) + \sum_{n=0}^{+\infty} f(\lambda^n x)$$

avec $\varphi(0)$ arbitraire dans \mathbb{R} .

10

(**)

Soit f définie par

$$f(x) = \sum_{n=1}^{+\infty} \frac{\sin(x^2)}{\operatorname{ch}(nx)}$$

Préciser le domaine de définition de f, etudier la continuité de f et donner enfin la limite en $+\infty$ de cette fonction.

Notons pour tout entier n

$$f_n: x \longmapsto \frac{\sin(x^2)}{\operatorname{ch}(nx)}$$

La fonction f_n est définie sur \mathbb{R} , paire et pour tout $x \geq 0$, on a

$$\left|\sin(x^2)\right| \le x^2$$
 et $\operatorname{ch}(nx) \ge \frac{e^{nx}}{2}$ d'où $|f_n(x)| \le 2x^2 e^{-nx}$

Une étude rapide de fonctions montre que $x \mapsto 2x^2e^{-nx}$ atteint son maximum sur \mathbb{R}_+ en 2/n et que ce dernier vaut $8e^{-2}/n^2$. On en déduit via la majoration précédente que $||f_n||_{\infty} = O(1/n^2)$ et la convergence normale de la série de fonction $\sum_{n\geq 0} f_n$ sur \mathbb{R}_+ , puis sur \mathbb{R} par parité. Par suite,

La fonction f est définie et continue sur \mathbb{R} .

Fixons maintenant x > 0 et notons $g(x) = \sum_{n=0}^{+\infty} \frac{1}{\operatorname{ch}(nx)}$. Pour tout entier n, on a

$$\frac{1}{\operatorname{ch}((n+1)x)} \le \int_{n}^{n+1} \frac{\mathrm{d}t}{\operatorname{ch}(tx)} \le \frac{1}{\operatorname{ch}(nx)}$$

En sommant ces inégalités pour n allant de 0 à $+\infty$ (chaque série converge car le terme général est négligeable devant $1/n^2$), il vient

$$g(x) - \frac{1}{\operatorname{ch} x} \le \int_0^{+\infty} \frac{\mathrm{d}t}{\operatorname{ch}(tx)} \le g(x) \qquad \text{soit} \qquad \int_0^{+\infty} \frac{\mathrm{d}t}{\operatorname{ch}(tx)} \le g(x) \le \frac{1}{\operatorname{ch} x} + \int_0^{+\infty} \frac{\mathrm{d}t}{\operatorname{ch}(tx)}$$

L'intégrale se calcule alors facilement

$$\int_{0}^{+\infty} \frac{\mathrm{d}t}{\mathrm{ch}(xt)} = \int_{0}^{+\infty} \frac{2e^{xt}}{\left(e^{xt}\right)^{2} + 1} \, \mathrm{d}t = \left[\frac{2}{x}\arctan\left(e^{xt}\right)\right]_{0}^{+\infty} = \frac{2}{x}\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi}{2x}$$

et par encadrement, compte tenu du fait que $1/\operatorname{ch}(x) = o(1/x)$ en $+\infty$,

$$g(x) \underset{x \to +\infty}{\sim} \frac{\pi}{2x}$$

et ainsi

$$f(x) \underset{x \to +\infty}{\sim} \frac{\pi \sin(x^2)}{2x} \xrightarrow[x \to +\infty]{} 0$$

Pour tout réel x, on pose

$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\sqrt{n^2 + x^2}}$$

Etudier le domaine de définition, la continuité et enfin la limite en $+\infty$ de f.

Pour tout entier $n \geq 1$, on note

$$f_n: x \longmapsto \frac{1}{\sqrt{n^2 + x^2}}$$

Pour tout $x \in \mathbb{R}$, la suite $(f_n(x))_{n \in \mathbb{N}}$ est positive, décroissante et de limite nulle. En vertu du critère spécial de convergence des séries alternées, la série $\sum_{n \geq 1} (-1)^{n-1} f_n(x)$ converge et

La fonction f est définie sur \mathbb{R} .

Soit $n \in \mathbb{N}^*$. Il est clair que f_n est de classe \mathcal{C}^∞ sur \mathbb{R} avec pour tout $x \in \mathbb{R}$

$$f'_n(x) = \frac{-x}{(n^2 + x^2)^{3/2}}$$
 et $f''_n(x) = \frac{2x^2 - n^2}{(n^2 + x^2)^{5/2}}$

On en déduit les variations de f_n' et notamment le fait que $|f_n'|$ soit maximal en $x=n/\sqrt{2}$ et ainsi que

$$\left|\left|(-1)^{n-1}f_n'\right|\right|_{\infty} = ||f_n'||_{\infty} = \frac{2}{3\sqrt{3}}\frac{1}{n^2} = O\left(\frac{1}{n^2}\right)$$

On peut donc appliquer le théorème de dérivation terme à terme des séries de fonctions puisque

- La série $\sum_{n>1} (-1)^{n-1} f_n$ converge simplement sur \mathbb{R} .
- La série $\sum_{n\geq 1} (-1)^{n-1} f_n'$ converge normalement sur \mathbb{R} .

En vertu du théorème,

La fonction f est de classe \mathcal{C}^1 et donc continue sur \mathbb{R} .

Pour déterminer la limite en $+\infty$, il suffit d'appliquer la majoration du reste d'une série alternée. On en déduit aussitôt que

$$\forall x \in \mathbb{R}, \qquad |f(x)| \le |f_1(x)| = \frac{1}{1+x^2}$$

Par majoration directe,

La fonction f est limite nulle en $+\infty$.

12

(**) _____

PC X 2009

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$$

- (a) Déterminer le domaine de définition de f.
- (b) Montrer que f est lipschitzienne.
- (c) Donner un équivalent simple de f(x) lorsque x tend vers $+\infty$.
- (a) Notons pour tout $n \ge 1$

$$f_n: x \longmapsto \frac{x}{x^2 + n^2}$$

Pour tout x non nul, on a $f_n(x) \sim x/n^2$ lorsque n tend vers $+\infty$ donc le critère de Riemann prouve que $\sum_{n\geq 1} f_n(x)$ converge. Par ailleurs, $f_n(0)=0$ la série $\sum_{n\geq 1} f_n(0)$ est également convergente. Par conséquent,

La fonction f est définie sur \mathbb{R} .

(b) Soient x, y appartenant à \mathbb{R} et $n \geq 1$. On peut remarquer que

$$f_n(x) - f_n(y) = \frac{x(y^2 + n^2) - y(x^2 + n^2)}{(x^2 + n^2)(y^2 + n^2)} = (x - y) \frac{n^2 - xy}{(x^2 + n^2)(y^2 + n^2)}$$

Par symétrie des rôles, on peut supposer $|x| \geq |y|$ et alors,

$$|n^2 - xy| \le n^2 + |xy| \le n^2 + x^2$$
 et $\left| \frac{n^2 - xy}{(x^2 + n^2)(y^2 + n^2)} \right| \le \frac{1}{y^2 + n^2} \le \frac{1}{n^2}$

Par suite,

$$|f_n(x) - f_n(y)| \le \frac{1}{n^2} |x - y|$$

En sommant pour $n \geq 1$, on obtient l'encadrement

$$\forall x, y \in \mathbb{R}, \qquad |f(x) - f(y)| \le \frac{\pi^2}{6} |x - y|$$

et donc

La fonction f est lipschitzienne.

Remarque : On pouvait aussi montrer que f était dérivable grâce au théorème de dérivation sous le signe somme, puis que sa dérivée est bornée sur \mathbb{R} .

(c) Fixons x > 0 et posons

$$h: t \longmapsto \frac{x}{x^2 + t^2}$$

La fonction h est continue, décroissante et intégrable sur \mathbb{R}_+ . Pour tout entier $n \in \mathbb{N}^*$,

$$\int_{n}^{n+1} h(t) dt \le h(n) \le \int_{n-1}^{n} h(t) dt$$

puis en sommant de 1 à $+\infty$,

$$\int_{1}^{+\infty} h(t) dt \le f(x) \le \int_{0}^{+\infty} h(t) dt$$

Or pour
$$a \in \{0, 1\}$$
, $\int_{a}^{+\infty} h(t) dt = \int_{a}^{+\infty} \frac{dt/x}{1 + (t/x)^2} = \left[\arctan(t/x)\right]_{a}^{+\infty} = \frac{\pi}{2} - \arctan(a/x)$

et notamment

$$\int_{a}^{+\infty} h(t) dt \xrightarrow[x \to +\infty]{} \frac{\pi}{2}$$

Par encadrement, on a donc

$$f(x) \xrightarrow[x \to +\infty]{} \frac{\pi}{2}$$

13

(++)

PC Mines 2009

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n+x}$$

- (a) Déterminer le domaine de définition de f et la continuité de f sur ce domaine.
- (b) Déterminer un équivalent de f(x) quand x tend vers 0^+ .
- (a) Notons pour tout $n \ge 1$

$$f_n: x \longmapsto \frac{e^{-nx}}{n+x}$$

Pour tout réel x, on a $f_n(x) \sim e^{-nx}/n$ lorsque n tend vers 0. On en déduit immédiatement par croissances comparées que la série $\sum_{n\geq 1} f_n(x)$ diverge grossièrement pour x<0 et converge pour x>0. Pour x=0, le critère de Riemann assre la divergence de la série $\sum_{n\geq 1} f_n(0)$. Ainsi,

La fonction f est définie sur \mathbb{R}_+^* .

Soit maintenant [a;b] un segment inclus dans \mathbb{R}_+^* . Alors, pour tout $n \geq 1$, $||f_n||_{\infty,[a;n]} = f_n(a)$ qui est le terme général d'une série convergente. On a donc convergence normale sur tout segment de \mathbb{R}_+^* de la série de fonctions $\sum_{n\geq 1} f_n$. Le théorème de continuité prouve alors que

La fonction f est continue sur \mathbb{R}_+^* .

(b) Pour tout x > 0, remarquons que

$$\sum_{n=1}^{+\infty} \frac{e^{-nx}}{n} = -\ln(1 - e^{-x})$$

Considérons donc

$$\Delta(x) = f(x) + \ln(1 - e^{-x})$$

$$= \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n+x} - \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n}$$

$$\Delta(x) = -x \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n(n+x)}$$

Si l'on définit sur \mathbb{R}_+^* l'application $g_n: x \longmapsto e^{-nx}/(n(n+x))$ pour tout $n \geq 1$, on peut remarquer que $||g_n||_{\infty} = 1/n^2$ qui est le terme général d'une série convergence. On a donc convergence normale de la série de fonctions $\sum_{n\geq 1} g_n$ sur \mathbb{R}_+^* , ce qui permet d'appliquer le théorème d'intervertion limite/somme et de conclure que

$$\sum_{n=1}^{+\infty} \frac{e^{-nx}}{n(n+x)} \xrightarrow[x\to 0]{} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \qquad \text{d'où} \qquad \Delta(x) \xrightarrow[x\to 0]{} 0$$

De plus, lorsque x tend vers 0,

$$\ln(1 - e^{-x}) = \ln\left(1 - \left(1 - x + O(x^2)\right)\right) = \ln\left(x + O(x^2)\right) = \ln x + \ln(1 + O(x)) \sim \ln x$$

Avec ce qui précède, on peut donc conclure que

$$f(x) \underset{x \to 0^+}{\sim} -\ln x$$

14

_ (*)

PC Mines 2016

Soit

$$f: t \longmapsto \sum_{n=1}^{+\infty} e^{-t\sqrt{n}}$$

- (a). Donner le domaine de définition D de f. Monter que f est de classe \mathcal{C}^1 sur D.
- (b). Déterminer la limite de f en $+\infty$.
- (c). Déterminer un équivalent lorsque t tend vers 0^+ de f(t).

Fixons t > 0. L'application $g_t : u \longmapsto e^{-t\sqrt{u}}$ est décroissante sur \mathbb{R}_+ et pour tout $n \in \mathbb{N}^*$,

$$\int_{n}^{n+1} g_t(u) \, du \le g_t(n) \le \int_{n-1}^{n} g_t(u) \, du$$

Notons que g_t est intégrable sur \mathbb{R}_+ car dominée par $t \mapsto 1/t^2$ au voisinage de $+\infty$. L'encadrement ci-dessus ne concerne donc que des termes généraux de séries convergentes. Cela permet d'obtenir, en sommant pour n allant de 1 à $+\infty$,

$$\int_{1}^{+\infty} g_t(u) \, \mathrm{d}u \le f(t) \le \int_{0}^{+\infty} g_t(u) \, \mathrm{d}u$$

Soit $a \in \{0,1\}$. En posant $s = t\sqrt{u}$, d'où $u = s^2/t^2$ et $\,\mathrm{d} u = 2s\,\mathrm{d} s/t^2,$ il vient

$$\int_{a}^{+\infty} g_{t}(u) du = \frac{2}{t^{2}} \int_{t\sqrt{a}}^{+\infty} s e^{-s} ds \underset{t \to 0^{+}}{\sim} \frac{2}{t^{2}} \int_{0}^{+\infty} s e^{-s} ds \quad \text{avec} \quad \int_{0}^{+\infty} s e^{-s} ds = \Gamma(2) = (2-1)! = 1$$

Finalement, par encadrement

$$f(t) \underset{t \to 0^+}{\sim} \frac{2}{t^2}$$

15

_ (**) .

PC Centrale 2009

Soit

$$f: x \longmapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+\sqrt{n}}$$

- (a) Déterminer le domaine de définition de f et justifier que f est de classe \mathcal{C}^{∞} sur ce domaine.
- (b) Déterminer la limite de f en $+\infty$ et un équivalent de f(x) quand x tend vers 0^+ .
- (a) Notons pour tout $n \in \mathbb{N}$

$$f_n: x \longmapsto \frac{e^{-nx}}{1+\sqrt{n}}$$

Pour tout réel x, on a $f_n(x) \sim e^{-nx}/\sqrt{n}$ lorsque n tend vers 0. On en déduit immédiatement par croissances comparées que la série $\sum_{n\geq 1} f_n(x)$ diverge grossièrement pour x<0 et converge pour x>0. Pour x=0, le critère de Riemann assre

la divergence de la série $\sum_{n\geq 1} f_n(0)$. Ainsi,

La fonction f est définie sur \mathbb{R}_+^* .

Il est clair que f_n est de classe \mathcal{C}^{∞} pour tout entier n, avec pour tout $p \in \mathbb{N}$,

$$\forall x > 0, \quad f_n^{(p)}(x) = \frac{(-n)^p e^{-nx}}{1 + \sqrt{n}} \quad \text{puis} \quad \forall [a; b] \subset \mathbb{R}_+^*, \quad \left| \left| f_n^{(p)} \right| \right|_{\infty, [a; b]} = \frac{n^p e^{-na}}{1 + \sqrt{n}} = o\left(\frac{1}{n^2}\right)$$

Appliquons le théorème de dérivabilité de la somme d'une série de fonctions.

- la série $\sum_{n\geq 0} f_n$ converge simplement sur \mathbb{R}_+^* .
- pour tout entier $p \in \mathbb{N}^*$, la série $\sum_{n \geq 0} f_n^{(p)}$ converge normalement sur tout segment de \mathbb{R}_+^* .

Le théorème peut donc s'appliquer et prouve que

La fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

(b) Appliquons le théorème d'interversion limite/somme en se plaçant sur $[1; +\infty[$. Alors,

- pour tout $n \in \mathbb{N}$, la fonction f_n a une limite en $+\infty$, qui est égale à 1 si n = 0 et 0 sinon.
- pour tout $n \in \mathbb{N}$, on a $||f_n||_{\infty,[1;+\infty[} = e^{-n}/(1+\sqrt{n}) = o(1/n^2)$ d'où la convergence normale de la série de fonctions $\sum_{n>0} f_n$ sur $[1;+\infty[$.

Le théorème s'applique et prouve que

La fonction f est de limite 1 en $+\infty$.

Pour obtenir l'équivalent de f en 0^+ , commençons par déterminer un équivalent en 0^+ de

$$g: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$$

On procède par comparaison série-intégrale. Soit $x \in]0;1[$. Pour tout entier $n \geq 1$,

$$\int_{n}^{n+1} \frac{e^{-xt}}{\sqrt{t}} dt \le \frac{e^{-nx}}{\sqrt{n}} \le \int_{n-1}^{n} \frac{e^{-xt}}{\sqrt{t}} dt$$

On somme pour n allant de 1 à $+\infty$ (la preuve de la convergence est laissée au lecteur) et il vient

$$\int_{1}^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt \le g(x) \le \int_{0}^{+\infty} \frac{e^{-xt}}{\sqrt{t}}$$

Par changement de variable u=xt, puis en utilisant l'égalité $\int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = 2 \int_0^{+\infty} e^{-v^2} dv = \sqrt{\pi}$, il vient

$$g(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{\sqrt{x}}$$

Majorons maintenant la quantité $\Delta(x) = f(x) - g(x)$. Pour tout $x \in]0;1[$,

$$\Delta(x) = 1 + \sum_{n=1}^{+\infty} e^{-nx} \left(\frac{1}{1 + \sqrt{n}} - \frac{1}{\sqrt{n}} \right) = 1 - \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}(1 + \sqrt{n})}$$

et donc

$$|\Delta(x)| \le 1 + \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n} = 1 - \ln(1 - e^{-x})$$

On vérifie facilement que $-\ln(1-e^{-x}) \sim -\ln x$ lorsque x tend vers 0^+ . Cette quantité étant négligeable devant $1/\sqrt{x}$ au voisinage de 0, on en déduit que $\Delta(x) = o(g(x))$ et donc $f(x) \sim g(x)$. Ainsi,

$$f(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{\sqrt{x}}$$

6 _____ (**:

PC X 2011

Etudier $f: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{inx}}{(1+n^2)(1+\ln n)}$.

Soit $n \ge 1$. On note

$$f_n: x \longmapsto \frac{e^{inx}}{(1+n^2)(1+\ln n)}$$

La fonction f_n ainsi définie est de classe \mathcal{C}^{∞} sur \mathbb{R} avec pour tout entier $p \in \mathbb{N}$ et tout réel x

$$f_n^{(p)}(x) = \frac{(in)^p e^{inx}}{(1+n^2)(1+\ln n)} \qquad \text{d'où} \qquad \left| \left| f_n^{(p)} \right| \right|_{\infty} = \frac{n^p}{(1+n^2)(1+\ln n)} \sim \frac{n^{p-2}}{\ln n}$$

On en déduit que la série $\sum_{n\geq 1} f_n^{(p)}$ converge normalement sur $\mathbb R$ si et seulement si p=0 car la série de Bertrand $\sum_{n\geq 2} 1/(n\ln n)$ diverge (preuve par comparaison série-intégrale). Cela assure néanmoins que

La fonction f est définie et continue sur \mathbb{R} .

Etudions maintenant le caractère dérivable de f, voire \mathcal{C}^k de f. D'après ce qui précède, le théorème de dérivation terme à terme ne permet pas de conclure sur une quelconque dérivabilité de f. Pour conclure, il faut donc exprimer f d'une autre manière, ce qui va se faire via une transformée d'Abel. Fixons $x \in \mathbb{R}$, et notons

$$\forall n \in \mathbb{N}^*, \qquad u_n = \frac{1}{(1+n^2)(1+\ln n)} \qquad \text{et} \qquad S_n(x) = \sum_{k=0}^n e^{ikx}$$

Alors,

$$f(x) = \sum_{n=1}^{+\infty} u_n \left(S_n(x) - S_{n-1}(x) \right)$$
$$= \sum_{n=1}^{+\infty} u_n S_n(x) - \sum_{n=0}^{+\infty} u_{n+1} S_n(x)$$
$$f(x) = u_1 + \sum_{n=1}^{+\infty} S_n(x) \left(u_n - u_{n+1} \right)$$

La suite $(S_n(0))_{n\in\mathbb{N}}$ n'est pas bornée. En revanche, pour tout $x\in\mathbb{R}\setminus\pi Z$, on a

$$|S_n(x)| = \left| \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} \right| \le \frac{2}{|1 - e^{ix}|}$$

De la même manière,

$$|S'_n(x)| = \left| \frac{-i(n+1)e^{i(n+1)x}}{1 - e^{ix}} + e^{ix} \frac{1 - e^{i(n+1)x}}{(1 - e^{ix})^2} \right| \le \frac{n+1}{|1 - e^{ix}|} + \frac{2}{|1 - e^{ix}|^2}$$

On en déduit notamment que pour tout segment I_{δ} de la forme $[\delta; 2\pi - \delta]$ avec $0 < \delta < \pi$,

$$||S_n||_{\infty,I_\delta} \le \frac{2}{|1 - e^{i\delta}|} = O(1)$$
 et $||S'_n||_{\infty,I_\delta} \le \frac{n+1}{|1 - e^{i\delta}|} + \frac{2}{|1 - e^{i\delta}|^2} = O(n)$

et enfin

$$||S_n(u_n - u_{n+1})||_{\infty,I_\delta} = O(u_n - u_{n+1})$$
 et $||S'_n(u_n - u_{n+1})||_{\infty,I_\delta} = O(n(u_n - u_{n+1}))$

Les séries $\sum_{n\geq 1}(u_n-u_{n+1})$ et $\sum_{n\geq 1}n(u_n-u_{n+1})$ convergent : la première convergence s'obtient par téléscopage, la seconde par

une transformée d'Abel dans l'autre sens. On en déduit que $\sum_{n\geq 1} S_n(u_n-u_{n+1})$ et $\sum_{n\geq 1} S_n'(u_n-u_{n+1})$ convergent normalement sur tout segment de $]0; 2\pi[$. Dès lors, le théorème de dérivation terme à terme s'applique avec la nouvelle expression de f, et ainsi, f est de classe \mathcal{C}^1 sur $]0; 2\pi[$. Par 2π -périodicité,

La fonction
$$f$$
 est de classe C^1 sur $\mathbb{R} \setminus \pi \mathbb{Z}$.

Remarque : Il semble difficile d'obtenir des réponses quand à la dérivabilité en 0, ou sur une éventuelle dérivée seconde de f. La question est suffisamment vague pour qu'on envisage que ces réponses ne soient pas attendues.

17 ______ (***) _

___ MP Mines 2011

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue, décroissante et intégrable. Montrer que

$$h \sum_{n=1}^{+\infty} f(nh) \xrightarrow[h \to 0^+]{} \int_0^{+\infty} f(t) dt$$

En déduire un équivalent de $\sum_{n=1}^{+\infty} \frac{n \, x^n}{1-x^n}$ lorsque x tend vers 1^- .

Soit $n \in \mathbb{N}^*$. Pour tout h > 0, on a par décroissance et positivité de f

$$\int_{nh}^{(n+1)h} f(t) \, dt \le h f(nh) \le \int_{(n-1)h}^{nh} f(t) \, dt$$

Notons que les intégrales sont les termes généraux d'une série positive convergente, par positivité de f. Cela assure la convergence de $\sum_{n\geq 0} f(nh)$, et en sommant pour n allant de 1 à $+\infty$ l'encadrement précédent, on obtient

$$\int_{h}^{+\infty} f(t) dt \le h \sum_{n=1}^{+\infty} f(nh) \le \int_{0}^{+\infty} f(t) dt$$

Cette encadrement prouve aussitôt que

$$\left| h \sum_{n=1}^{+\infty} f(nh) \xrightarrow[h \to 0]{} \int_{0}^{+\infty} f(t) dt \right|$$

Soit maintenant $x \in]0;1[$. On remarque immédiatement que la série $\sum_{n=1}^{+\infty} n \, x^n/(1-x^n)$ converge car c'est une série à termes positifs dont le terme général est équivalent à $n \, x^n$, terme général d'une série convergente car dominé par $1/n^2$ lorsque n tend vers $+\infty$. Ensuite, pour tout entier n, on a

$$\frac{x^n}{1 - x^n} = \frac{e^{n \ln x}}{1 - e^{n \ln x}} = \frac{e^{-nh}}{1 - e^{-nh}} \quad \text{avec} \quad h = -\ln x$$

Lorsque x tend vers 1^- , h tend vers 0^+ ce qui amène à utiliser ce qui précède avec $f: t \longmapsto t \, e^{-t}/(1-e^{-t})$. Ainsi,

$$\sum_{n=1}^{+\infty} \frac{n \, x^n}{1 - x^n} = \frac{1}{h} \sum_{n=1}^{+\infty} f(nh)$$

La fonction f se prolonge par continuité en 0 par 1, et est intégrable en $+\infty$ car équivalente à $te^{-t} = o(1/t^2)$. Il faut encore vérifier la décroissante sur \mathbb{R}_+ . Cette fonction est \mathcal{C}^1 sur \mathbb{R}_+^* avec pour tout t > 0,

$$f(t) = \frac{t}{e^t - 1}$$
 d'où $f'(t) = \frac{1}{e^t - 1} - \frac{te^t}{(e^t - 1)^2} = \frac{e^t(1 - t - e^{-t})}{(e^t - 1)^2}$

La convexité de $t \mapsto e^{-t}$ montre que $1 - t - e^{-t} \le 0$ pour tout $t \in \mathbb{R}$, et donc que f' est bien négative sur \mathbb{R}_+^* . Ainsi, f est décroissante.

Le résultat établi précédemment assure maintenant que

$$h \sum_{n=1}^{+\infty} f(nh) \xrightarrow[h \to 0^+]{} \int_0^{+\infty} f(t) \, \mathrm{d}t = \int_0^{+\infty} \frac{t \, e^{-t}}{1 - e^{-t}}$$

d'où

$$\frac{1}{h} \sum_{n=1}^{+\infty} f(nh) \underset{h \to 0^+}{\sim} \frac{1}{h^2} \int_0^{+\infty} \frac{t \, e^{-t}}{1 - e^{-t}} \, \mathrm{d}t \qquad \text{soit} \qquad \sum_{n=1}^{+\infty} \frac{n \, x^n}{1 - x^n} \underset{x \to 1^-}{\sim} \frac{1}{(\ln x)^2} \int_0^{+\infty} \frac{t \, e^{-t}}{1 - e^{-t}} \, \mathrm{d}t$$

L'équivalent se simplifie en remarquant qu'au voisinage de 1, $\ln x \sim (x-1)$. De plus, l'intégrale se calcule grâce au théorème d'intégration terme à terme sur un intervalle quelconque. En effet, Pour tout t > 0,

$$\frac{t e^{-t}}{1 - e^{-t}} = t e^{-t} \sum_{n=0}^{+\infty} e^{-nt} = \sum_{n=1}^{+\infty} g_n(t) \quad \text{avec} \quad g_n : t \longmapsto t e^{-(n+1)t}$$

Vérifions les hypothèses du théorème

- Pour tout entier n, la fonction g_n est continue et intégrable sur \mathbb{R}_+^* , car prolongeable par continuité en 0, et dominée par $t \longmapsto 1/t^2$ en $+\infty$.
- Par construction, la série $\sum_{n\geq 0}g_n$ converge simplement vers g qui est continue sur \mathbb{R}_+^* .
- Enfin, pour tout entier $n \in \mathbb{N}$, $\int_0^{+\infty} |g_n(t)| dt = \int_0^{+\infty} t e^{-(n+1)t} dt = \frac{1}{(n+1)^2}$

qui est le terme général d'une série convergente.

Le théorème s'applique et ainsi

$$\int_0^{+\infty} f(t) dt = \sum_{n=0}^{+\infty} \left(\int_0^{+\infty} g_n(t) dt \right)$$

soit

$$\int_0^{+\infty} \frac{t e^{-t}}{1 - e^{-t}} dt = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6}$$

Pour conclure

$$\sum_{n=1}^{+\infty} \frac{n \, x^n}{1 - x^n} \underset{x \to 1^-}{\sim} \frac{\pi^2}{6} \frac{1}{(x-1)^2}$$

18

__ (**) _____

PC Mines 2011

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{x^n}{1+x^n}$$

- (a) Déterminer le domaine de définition de f. La fonction f est elle continue sur ce domaine? de classe \mathcal{C}^1 ?
- (b) Donner un équivalent de f(x) quand x tend vers 1^- .
- (a) Notons pour tout $n \in \mathbb{N}^*$

$$f_n: x \longmapsto \frac{x^n}{1+x^n}$$

La fonction f_1 n'est pas définie en -1. Pour tout $x \in]-\infty; -1[\cup]1; +\infty[$, la quantité $f_n(x)$ tend vers 1 lorsque n tend vers $+\infty$ donc la série $\sum_{n\geq 0} f_n(x)$ diverge grossièrement. Il en est de même si x=1. Enfin, pour |x|<1, on a $|f_n(x)|\sim |x|^n$ qui

est le terme général d'une série convergente. Le théorème de comparaison prouve alors que $\sum_{n\geq 1} f_n(x)$ converge absolument donc converge. Finalement,

La fonction f est définie sur]-1;1[.

Notons que pour tout $n \in \mathbb{N}^*$, la fonction f_n est de classe \mathcal{C}^1 sur]-1;1[avec

$$\forall x \in]-1; 1[, \qquad f'_n(x) = \frac{nx^{n-1}}{(1+x^n)^2}$$

Si [-a; a] est un segment inclus dans]-1; 1[, on en déduit que pour tout $n \ge 1$,

$$||f_n||_{\infty,[-a;a]} \le \frac{na^{n-1}}{(1-a^n)^2} = O(a^n)$$

On en déduit donc que

- la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur]-1;1[.
- la série de fonctions $\sum_{n\geq 1} f'_n$ converge normalement sur tout segment de]-1;1[.

Le théorème s'applique et prouve que

La fonction f est de classe C^1 sur]-1;1[.

(b) Fixons $x \in [0; 1[$ et notons

$$h: \ \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$t \longmapsto \frac{x^t}{1 + x^t} = \frac{e^{t \ln x}}{1 + e^{t \ln x}}$$

On vérifie facilement que f est continue, décroissante et intégrable sur \mathbb{R}_+ (car négligable par croissance comparées devant $t \longmapsto 1/t^2$ en $+\infty$). Pour tout $n \ge 1$,

$$\int_{n}^{n+1} h(t) dt \le h(n) \le \int_{n-1}^{n} h(t) dt$$

d'où en sommant pour n allant de 1 à $+\infty$ (la convergence est assurée par l'intégrabilité de h)

$$\int_{1}^{+\infty} h(t) dt \le f(x) \le \int_{0}^{+\infty} h(t) dt$$

En effectuant le changement de variable affine $u=-t\ln x$ dans l'intégrale, il s'ensuit que

$$\frac{1}{-\ln x} \int_{-\ln x}^{+\infty} \frac{e^{-u}}{1 + e^{-u}} \, \mathrm{d}u \le f(x) \le \frac{1}{-\ln x} \int_{0}^{+\infty} \frac{e^{-u}}{1 + e^{-u}} \, \mathrm{d}u$$

Notons que $-\ln x \sim 1 - x$ lorsque x tend vers 1. De plus,

$$\int_0^{+\infty} \frac{e^{-u}}{1 + e^{-u}} du = \left[-\ln(1 + e^{-u})\right]_0^{+\infty} = \ln 2$$

L'encadrement précédent permet de conclure que

$$f(x) \underset{x \to 1^{-}}{\sim} \frac{\ln 2}{1 - x}$$