Mines Maths 1 PC 2019 — Énoncé

2/6

Comportement asymptotique de sommes de séries entières

Soit p un entier naturel non nul et r un nombre réel $\mathit{strictement positif}$. On considère la fonction

$$S_{r,p}: z \in \mathbf{C} \mapsto \sum_{n=1}^{+\infty} \frac{(pn)^r}{(pn)!} z^{pn}.$$

L'objectif du problème est d'établir la validité de l'énoncé suivant :

$$S_{r,p}(x) \underset{x \to +\infty}{\sim} \frac{1}{p} x^r e^x \qquad (H_{r,p})$$

Cet objectif sera atteint dans la partie II pour le cas particulier p=1, et dans la partie III pour le cas $p \ge 2$. Dans la partie IV, on étudie une application de ce résultat au comportement asymptotique d'une solution particulière d'une certaine équation différentielle d'ordre 2.

Dans tout le sujet, on note $\lfloor x \rfloor$ la partie entière du nombre réel x, c'est-à-dire l'unique entier k tel que $k \le x < k+1$. On rappelle que par convention $0^0=1$, tandis que $0^r=0$ pour tout réel r>0.

I Généralités, cas particuliers

- 1. Soit $r \in \mathbf{R}_+^*$ et $p \in \mathbf{N}^*$. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$, et faire de même pour la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^{np}$.
- 2. Pour x réel, expliciter $S_{0,1}(x)$ et $S_{0,2}(x)$, et en déduire la validité des énoncés $H_{0,1}$ et $H_{0,2}$.

Mines Maths 1 PC 2019 — Énoncé 3/6

III Démonstration de $H_{r,p}$ pour $p \geq 2$

On fixe dans cette partie un entier naturel $p\geq 2$ et un réel r>0, et l'on se propose de déduire la validité de $H_{r,p}$ de celle de $H_{r,1}$.

Pour $n \in \mathbf{N}$ et $x \in \mathbf{R}_+^*$, on pose

$$u_n(x) := \frac{n^r}{n!} x^n.$$

Mines Maths 1 PC 2019 — Énoncé

4/6

10. On fixe un réel x > 0. Étudier le signe de la fonction

$$\varphi_x: t \in [1, +\infty[\mapsto t^{1-r}(t-1)^r - x.$$

On montrera en particulier que φ_x s'annule en un unique élément de $[1,+\infty[$ que l'on notera t_x . En déduire que la suite finie $(u_n(x))_{0 \le n \le \lfloor t_x \rfloor}$ est croissante et que la suite $(u_n(x))_{n \ge \lfloor t_x \rfloor}$ est décroissante.

L'ensemble $\{u_n(x) \mid n \in \mathbb{N}\}$ admet donc un maximum valant $u_{\lfloor t_x \rfloor}(x)$. Dans la suite de cette partie, ce maximum sera noté M_x .

11. Soit $\alpha \in \mathbf{R}$. Déterminer la limite de $\varphi_x(x+\alpha)$ quand x tend vers $+\infty$. En déduire que

$$t_x - x - r \xrightarrow[r \to +\infty]{} 0.$$

Pour établir ce dernier résultat, on pourra revenir à la définition d'une limite.

12. Montrer que pour tout entier relatif k,

$$u_{\lfloor x \rfloor + k}(x) \underset{x \to +\infty}{\sim} u_{\lfloor x \rfloor}(x).$$

13. Soit $m \in \mathbf{N}^*$. Montrer que

$$\sum_{i=\lfloor x\rfloor-m}^{\lfloor x\rfloor}u_i(x)\geq m\,u_{\lfloor x\rfloor}(x)\quad\text{pour }x\text{ voisin de }+\infty.$$

En déduire que, pour x voisin de $+\infty$,

$$u_{\lfloor x \rfloor}(x) \le \frac{x^r e^x}{m}$$
.

14. En déduire que pour tout entier relatif k,

$$u_{|x|+k}(x) = o_{x\to+\infty}(x^r e^x)$$

puis que

$$M_r = o_{r \to +\infty}(x^r e^x).$$

En vue de ce dernier résultat, on pourra commencer par démontrer que, pour x assez grand, $M_x = u_{|x|+i}(x)$ pour un entier i compris entre |r|-1 et |r|+2.

15. Dans cette question et la suivante, on fixe un nombre complexe z tel que |z|=1 et $z\neq 1$. Pour $n\in \mathbb{N}^*$, on pose

$$D_n := \sum_{k=0}^{n-1} z^k.$$

Montrer que

$$\forall n \in \mathbf{N}^*, \ |D_n| \le \frac{2}{|1-z|}$$

et que les séries $\sum_{n} D_n u_{n-1}(x)$ et $\sum_{n} D_n u_n(x)$ sont absolument convergentes.

16. On conserve le nombre complexe z introduit dans la question précédente. Montrer que

$$\forall x \in \mathbf{R}_{+}^{*}, \sum_{n=1}^{+\infty} D_{n} (u_{n-1}(x) - u_{n}(x)) = S_{r,1}(zx)$$

puis que, pour x voisin de $+\infty$,

$$|S_{r,1}(zx)| \le \frac{4 M_x}{|1-z|},$$

et conclure à la relation

$$S_{r,1}(zx) = o_{x\to +\infty}(x^r e^x).$$

17. On pose $\xi := \exp\left(\frac{2i\pi}{p}\right)$. Pour tout réel x, montrer que

$$\sum_{k=0}^{p-1} S_{r,1}(\xi^k x) = p \, S_{r,p}(x)$$

et en déduire la validité de $H_{r,p}$.