EXERCICE 2

Résolution d'une équation fonctionnelle

Dans cet exercice, on souhaite déterminer les fonctions $f:]0, +\infty[\to \mathbb{R}$ vérifiant les relations :

$$\lim_{x \to +\infty} f(x) = 0 \quad \text{et} \quad \forall x \in]0, +\infty[, \quad f(x+1) + f(x) = \frac{1}{x^2}.$$
 (P)

Partie I - Existence et unicité de la solution du problème (P)

Dans cette partie, on démontre que le problème (P) admet une unique solution et on détermine une expression de celle-ci sous la forme d'une série de fonctions.

I.1 - Existence de la solution

Pour tout $k \in \mathbb{N}$, on définit la fonction $\varphi_k :]0, +\infty[\to \mathbb{R}$ par :

$$\forall x \in]0, +\infty[, \quad \varphi_k(x) = \frac{(-1)^k}{(x+k)^2}.$$

Q12. Montrer que la série de fonctions $\sum_{k\geqslant 0} \varphi_k$ converge simplement sur $]0,+\infty[$.

Dans tout le reste de cet exercice, on note $\varphi:]0, +\infty[\to \mathbb{R}$ la somme de la série $\sum_{k \ge 0} \varphi_k$.

- **Q13.** Montrer que pour tout $x \in]0, +\infty[$, on a $\varphi(x+1) + \varphi(x) = \frac{1}{x^2}$.
- Q14. En utilisant le théorème spécial des séries alternées, montrer que :

$$\forall x \in]0, +\infty[, \quad \forall n \in \mathbb{N}, \quad \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leq \frac{1}{(x+n+1)^2}.$$

Q15. Montrer que la fonction φ est une solution de (P).

I.2 - Unicité de la solution

Q16. Montrer que si $f:]0, +\infty[\to \mathbb{R}$ est une solution de (P), alors pour tout $n \in \mathbb{N}$, on a :

$$\forall x \in]0, +\infty[, \quad f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

Q17. En déduire que la fonction φ est l'unique solution de (P).

Partie II - Étude de la solution du problème (P)

Dans cette partie, on étudie quelques propriétés de l'unique solution $\varphi:]0, +\infty[\to \mathbb{R}$ du problème (P).

- **Q18.** Soit $\varepsilon > 0$. Montrer que la série de fonctions $\sum_{k \geq 0} \varphi_k$ converge uniformément sur $[\varepsilon, +\infty[$.
- **Q19.** Montrer que la fonction φ est continue sur $]0, +\infty[$. En utilisant le fait que φ est une solution du problème (P), en déduire un équivalent simple de φ au voisinage de 0^+ .
- **Q20.** Justifier que la fonction φ est dérivable sur $]0, +\infty[$ et que l'on a :

$$\forall x \in]0, +\infty[, \quad \varphi'(x) = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}.$$

- **Q21.** En déduire que la fonction φ est décroissante sur $]0, +\infty[$.
- Q22. En utilisant le résultat de la question précédente et la relation (P), montrer que :

$$\forall x \in]1, +\infty[, \quad \frac{1}{x^2} \le 2\varphi(x) \le \frac{1}{(x-1)^2}.$$

En déduire un équivalent de φ en $+\infty$.

Partie III - Expression intégrale de la solution du problème (P)

Dans cette partie, on détermine une expression de φ sous la forme d'une intégrale. On considère un élément $x \in]0, +\infty[$.

Q23. Pour tout $k \in \mathbb{N}$, montrer que la fonction $t \mapsto t^{x+k-1} \ln(t)$ est intégrable sur [0, 1] et que l'on a :

$$\int_0^1 t^{x+k-1} \ln(t) dt = -\frac{1}{(x+k)^2}.$$

Q24. En déduire que la fonction $t \mapsto \frac{t^{x-1} \ln(t)}{1+t}$ est intégrable sur]0,1] et que :

$$\varphi(x) = -\int_0^1 \frac{t^{x-1} \ln(t)}{1+t} dt.$$

EXERCICE 3

Approximation d'une racine carrée par la méthode de Héron

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$ et on note I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$. De plus, si $M \in \mathcal{M}_n(\mathbb{R})$, on désigne par M^T la transposée de la matrice M et par $\mathrm{Tr}(M)$ la trace de la matrice M.

Partie I - Approximation de la racine carrée d'un réel positif

On considère la suite de fonctions $(f_k)_{k \in \mathbb{N}}$ définie par :

$$f_0: \mathbb{R}_+ \to \mathbb{R}$$
 et $\forall x \in \mathbb{R}_+, f_0(x) = 1$

et la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \quad f_k : \mathbb{R}_+ \to \mathbb{R} \quad \text{et} \quad \forall x \in \mathbb{R}_+ \quad f_k(x) = \frac{1}{2} \left(f_{k-1}(x) + \frac{x}{f_{k-1}(x)} \right).$$

On admet que la suite $(f_k)_{k \in \mathbb{N}}$ est correctement définie par les relations ci-dessus. Dans la suite, on pourra utiliser sans la démontrer l'inégalité :

$$\forall k \in \mathbb{N}, \quad \forall x \in \mathbb{R}_+, \quad f_k(x) > 0.$$

I.1 - Convergence de la suite $(f_k)_{k \in \mathbb{N}}$

- **Q25.** Soit $x \in \mathbb{R}_+$. En calculant $(f_k(x))^2 x$, montrer que $f_k(x) \ge \sqrt{x}$ pour tout $k \in \mathbb{N}^*$.
- **Q26.** Soit $x \in \mathbb{R}_+$. Montrer que la suite $(f_k(x))_{k \in \mathbb{N}^*}$ est décroissante.
- **Q27.** Déduire des deux questions précédentes que la suite de fonctions $(f_k)_{k \in \mathbb{N}}$ converge simplement vers la fonction $f: \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = \sqrt{x}$ pour tout $x \in \mathbb{R}_+$.

I.2 - Majoration de l'erreur

Q28. Soit $x \in \mathbb{R}_+$. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$f_{k+1}(x) - \sqrt{x} = \frac{f_k(x) - \sqrt{x}}{2} \left(1 - \frac{\sqrt{x}}{f_k(x)} \right).$$

Q29. Soit $x \in \mathbb{R}_+$. En déduire que pour tout $k \in \mathbb{N}^*$, on a :

$$\left| f_k(x) - \sqrt{x} \right| \leqslant \frac{1+x}{2^k}.$$