Partie III - Séries factorielles

III.A -

III.A.1) Pour tout entier naturel n et pour tout réel x strictement positif, on pose :

$$u_n(x) = \frac{n!}{x(x+1)...(x+n)}, v_n(x) = \frac{1}{(n+1)^x}, w_n(x) = \frac{u_n(x)}{v_n(x)}.$$

Montrer que la série de terme général

$$\ln\left(\frac{w_n(x)}{w_{n-1}(x)}\right)$$
, définie pour $n \ge 1$, est convergente.

III.A.2) En déduire qu'il existe l(x) (dépendant de x et strictement positif) tel que :

$$\lim_{n \to +\infty} \frac{u_n(x)}{v_n(x)} = l(x).$$

III.B - Soit $(a_n)_{n\geq 0}$ une suite de complexes et x un réel strictement positif. Montrer que la série $\sum_{n\geq 0} a_n u_n(x)$ est absolument convergente (en abrégé AC) si et seulement si la série $\sum_{n\geq 0} a_n v_n(x)$ est AC.

III.C - On désigne désormais par \mathscr{A} l'ensemble des suites $(a_n)_{n\geq 0}$ indexées par IN telles que la série $\sum_{n\geq 0}a_nu_n(x)$ soit AC pour tout réel x strictement positif. Soit $a=(a_n)_{n\geq 0}$ un élément de \mathscr{A} , montrer que :

III.C.1) la fonction f_a définie par :

$$x \mapsto f_a(x) = \sum_{n=0}^{+\infty} a_n u_n(x)$$

est continue sur l'intervalle $]0, +\infty[$.

III.C.2) la fonction f_a tend vers 0 en $+\infty$.

III.D -

III.D.1) Donner un exemple d'un élément a de $\mathscr A$ avec a_n non nul pour tout entier n .

III.D.2) Donner un exemple d'une suite $(a_n)_{n\geq 0}$ qui ne soit pas un élément de \mathscr{A} .

III.E - Soit a un élément de \mathscr{A} .

III.E.1) Montrer que, pour tout entier n la fonction $x \mapsto u_n(x)$ est de classe C^1 sur l'intervalle $]0, +\infty[$ et que :

$$\forall x > 0 , |u'_n(x)| \le u_n(x) \left(\frac{1}{x} + \ln\left(1 + \frac{n}{x}\right)\right)$$

III.E.2) En déduire que la fonction f_a est de classe C^1 sur l'intervalle $]0,+\infty[$.

N.B. On dira alors que la fonction f_a est développable en série factorielle (sous-entendu ici sur $]0,+\infty[$ et en abrégé DSFA) et on admettra qu'un tel développement est unique.